Skip to main content
Log in

A survey on recent developments in diabetic retinopathy detection through integration of deep learning

  • Track 2: Medical Applications of Multimedia
  • Published:
Multimedia Tools and Applications Aims and scope Submit manuscript

Abstract

Diabetes, nowadays, is a very common disease throughout the world among people of all ages. The higher level of blood sugar in the blood more often leads to Damage to blood vessels in the retina leads to blindness if left untreated or undetected on time. Diabetic Retinopathy (DR) screening programs like retinal fundus image analysis help ophthalmologists deal with some visual impairment problems. Computer-Aided Diagnosis aims to detect the severity of DR as early as possible so that it can be handled before the occurrence of any irreversible vision loss. With the help of many advancements in artificial intelligence techniques, a highly efficient and accurate system can be designed to help medical professionals automatically diagnose DR at an early stage without any special clinical resources. This paper conducts a thorough investigation into several recent frameworks proposed based on machine learning and deep learning networks to classify non-proliferative diabetic retinopathy, exudates, hemorrhages, and micro aneurysms. Several promising pre-trained deep learning model to classify DR stages exploited by researchers, and also investigated Transfer learning on pre-trained GoogLeNet and AlexNet, VGG etc. models. It is observed that almost all public and private data sets widely available for research are imbalanced. To alleviate these issues, generative adversarial networks (GANs) and their variants were also used to generate label-preserving data. In this study, the authors also list the recently proposed GAN-based frameworks and their impact on model performance. The paper concludes with the current challenges and future directions in the early and accurate classification of the severity level of DR.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

The manuscript does not have any associated data which was generated.

References

  1. Abbas Q, Fondon I, Sarmiento A, Jiménez S, Alemany P (2017) Automatic recognition of severity level for diagnosis of diabetic retinopathy using deep visual features. Med Biol Eng Comput 55(11):1959–1974

    Article  Google Scholar 

  2. AbdelMaksoud E, Barakat S, Elmogy M (2022) A computer-aided diagnosis system for detecting various diabetic retinopathy grades based on a hybrid deep learning technique. Med Biol Eng Comput:1–24

  3. Abràmoff MD, Lou Y, Erginay A, Clarida W, Amelon R, Folk JC, Niemeijer M (2016) Improved automated detection of diabetic retinopathy on a publicly available dataset through integration of deep learning. Investig Ophthalmol Vis Sci 57(13):5200–5206

    Article  Google Scholar 

  4. Achanta SDM, Karthikeyan T, Kanna RV (2021) Wearable sensor based acoustic gait analysis using phase transition-based optimization algorithm on IoT. Int J Speech Technol. https://doi.org/10.1007/s10772-021-09893-1

    Article  Google Scholar 

  5. Adal KM, Van Etten PG, Martinez JP, Rouwen KW, Vermeer KA, van Vliet LJ (2017) An automated system for the detection and classification of retinal changes due to red lesions in longitudinal fundus images. IEEE Trans Biomed Eng 65(6):1382–1390

    Article  Google Scholar 

  6. Adem K (2018) Exudate detection for diabetic retinopathy with circular hough transformation and convolutional neural networks. Expert Syst Appl 114:289–295

    Article  Google Scholar 

  7. Adem K, Hekim M, Demir S (2019) Detection of hemorrhage in retinal images using linear classifiers and iterative thresholding approaches based on firefly and particle swarm optimization algorithms. Turkish J Electr Eng Comput Sci 27(1):499–515

    Article  Google Scholar 

  8. Alban M, Gilligan T (2016) Automated detection of diabetic retinopathy using fluorescein angiography photographs. Report of standford education

  9. Amin J, Sharif M, Yasmin M (2016) A review on recent developments for detection of diabetic retinopathy. Scientifica 2016:6838976

    Article  Google Scholar 

  10. Aria dataset. https://www.eyecharity.weebly.com/aria_online.html

  11. Arunkumar R, Karthigaikumar P (2017) Multi-retinal disease classification by reduced deep earning features. Neural Comput Appl 28(2):329–334

    Article  Google Scholar 

  12. Bhat SH, Kumar P (2019) Segmentation of optic disc by localized active contour model in retinal fundus image. In: Smart innovations in communication and computational sciences. Springer, pp 35–44

  13. Burlina PM, Joshi N, Pacheco KD, Liu TA, Bressler NM (2019) Assessment of deep generative models for high-resolution synthetic retinal image generation of age-related macular degeneration. JAMA Ophthalmol 137(3):258–264

    Article  Google Scholar 

  14. Cao W, Czarnek N, Shan J, Li L (2018) Microaneurysm detection using principal component analysis and machine learning methods. IEEE Trans Nanobiosci 17(3):191–198

    Article  Google Scholar 

  15. Chen K, Franko K, Sang R (2021) Structured model pruning of convolutional networks on tensor processing units. arXiv preprint arXiv:2107.04191

  16. Choong K, Heng et al (2022) Performance analysis of multi-level thresholding for microaneurysm detection. Multimed Tools Appl:1–20

  17. Chowdhury A, Roy T, Chatterjee, Banerjee S (2019) A random forest classifier-based approach in the detection of abnormalities in the retina. Med Biol Eng Comput 57(1):193–203

    Article  Google Scholar 

  18. Costa P, Galdran A, Meyer MI, Mendonça AM, Campilho A (2017) Adversarial synthesis of retinal images from vessel trees. In: International conference image analysis and recognition. Springer, pp 516–523

  19. Costa P, Galdran A, Meyer MI, Niemeijer M, Abràmoff M, Mendonça AM (2017) Campilho end-to-end adversarial retinal image synthesis. IEEE Trans Med Imaging 37(3):781–791

  20. Dai L, Fang R, Li H, Hou X, Sheng B, Wu Q, Jia W (2018) Clinical report guided retinal microaneurysm detection with multi-sieving deep learning. IEEE Trans Med Imaging 37(5):1149–1161

    Article  Google Scholar 

  21. Deepa V, Kumar CS, Andrews SS (2019) Automated detection of microaneurysms using stockwell transform and statistical features. IET Image Proc 13(8):1341–1348

    Article  Google Scholar 

  22. Diaretdb0 dataset. http://www.it.lut.fi/project/imageret/diaretdb0/

  23. Doshi D, Shenoy A, Sidhpura D, Gharpure P (2016) Diabetic retinopathy detection using deep convolutional neural networks. In: 2016 International Conference on Computing, Analytics and Security Trends (CAST). IEEE, pp 261–266

  24. Dridb dataset. https://www.ipg.fer.hr/ipg/resources/image_database

  25. Drive dataset. https://www.isi.uu.nl/Research/Databases/DRIVE/

  26. E-ophtha dataset. http://www.adcis.net/en/Download-Third-Party/E-Ophtha.html

  27. E. T. D. R. S. R. Group et al (1991) Grading diabetic retinopathy from stereoscopic color fundus photographs—an extension of the modified airlie house classification: Etdrs report number 10. Ophthalmology 98(5):786–806

    Article  Google Scholar 

  28. Fan Z, Lu J, Wei C, Huang H, Cai X, Chen X (2018) A hierarchical image matting model for blood vessel segmentation in fundus images. IEEE Trans Image Process 28(5):2367–2377

    Article  MathSciNet  Google Scholar 

  29. Feng S, Zhuo Z, Pan D, Tian Q (2020) Ccnet: A cross-connected convolutional network for segmenting retinal vessels using multi-scale features. Neurocomputing 392:268–276

    Article  Google Scholar 

  30. Fu H, Cheng J, Xu Y, Wong DWK, Liu J, Cao X (2018) Joint optic disc and cup segmentation based on multi-label deep network and polar transformation. IEEE Trans Med Imaging 37(7):1597–1605

    Article  Google Scholar 

  31. Gargeya R, Leng T (2017) Automated identification of diabetic retinopathy using deep learning. Ophthalmology 124(7):962–969

    Article  Google Scholar 

  32. Goodfellow IJ, Pouget-Abadie J, Mirza M, Xu B, Warde-Farley D, Ozair S, Courville A, Bengio Y (2014) Generative adversarial networks. arXiv preprint arXiv:1406.2661

  33. Graham B (2015) Kaggle diabetic retinopathy detection competition report. University of Warwick

  34. Gulshan V, Peng L, Coram M, Stumpe MC, Wu D, Narayanaswamy A, Venugopalan S, Widner K, Madams T, Cuadros J et al (2016) Development and validation of a deep learning algorithm for detection of diabetic retinopathy in retinal fundus photographs. JAMA 316(22):2402–2410

    Article  Google Scholar 

  35. Hasan Md K et al (2021) DRNet: Segmentation and localization of optic disc and fovea from diabetic retinopathy image. Artif Intell Med 111:102001

    Article  Google Scholar 

  36. Hatanaka Y, Ogohara K, Sunayama W, Miyashita M, Muramatsu C, Fujita H (2018) Automatic microaneurysms detection on retinal images using deep convolution neural network. In: 2018 International Workshop on Advanced Image Technology (IWAIT). IEEE, pp 1–2

  37. He W et al (2021) Incremental learning for exudate and hemorrhage segmentation on fundus images. Inform Fusion 73:157–164

    Article  Google Scholar 

  38. Hernandez-Matas C, Zabulis X, Triantafyllou A, Anyfanti P, Douma S, Argyros AA (2017) Fire: fundus image registration dataset. Model Artif Intell Ophthalmol 1(4):16–28

    Article  Google Scholar 

  39. Hsu W, Pallawala P, Lee ML, Eong K-GA (2001) The role of domain knowledge in the detection of retinal hard exudates. In: Proceedings of the 2001 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. CVPR 2001, vol 2. IEEE, pp II–II

  40. Hussain S et al (2022) DilUnet: a U-net based architecture for blood vessels segmentation. Comput Methods Programs Biomed 218:106732

  41. Indian diabetic retinopathy image dataset idrid, nov (2019) https://ieee-dataport.org/open-access/indian-diabetic-retinopathy-image-dataset-idrid. Accessed 14 June 2021

  42. Isola P, Zhu J-Y, Zhou T, Efros AA (2017) Image-to-image translation with conditional adversarial networks. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 1125–1134

  43. Jin Q, Meng Z, Pham TD, Chen Q, Wei L, Su R (2019) Dunet: a deformable network for retinal vessel segmentation. Knowl Based Syst 178:149–162

    Article  Google Scholar 

  44. Kaggle dataset. https://www.kaggle.com/c/diabetic-retinopathy-detection/data

  45. Kaur J, Mittal D (2017) A generalized method for the detection of vascular structure in pathological retinal images. Biocybern Biomed Eng 37(1):184–200

    Article  Google Scholar 

  46. Khojasteh P, Júnior LAP, Carvalho T, Rezende E, Aliahmad B, Papa JP, Kumar DK (2019) Exudate detection in fundus images using deeply-learnable features. Comput Biol Med 104:62–69

    Article  Google Scholar 

  47. Kolb H (1995) Simple anatomy of the retina [internet]. Webvision: the organization of the retina and visual system. University of Utah Health Sciences Center, Salt Lake City

  48. Lam C, Yi D, Guo M, Lindsey T (2018) Automated detection of diabetic retinopathy using deep learning. AMIA Summits Transl Sci Proc 2018:147

    Google Scholar 

  49. Lecouat B, Chang K, Foo C-S, Unnikrishnan B, Brown JM, Zenati H, Beers A, Chandrasekhar V, Kalpathy-Cramer J, Krishnaswamy P (2018) Semi-supervised deep learning for abnormality classification in retinal images. arXiv preprint arXiv:1812.07832

  50. Leopold HA, Orchard J, Zelek JS, Lakshminarayanan V (2019) Pixelbnn: augmenting the pixelcnn with batch normalization and the presentation of a fast architecture for retinal vessel segmentation. J Imaging 5(2):26

  51. Li F, Liu Z, Chen H, Jiang M, Zhang X, Wu Z (2019) Automatic detection of diabetic retinopathy in retinal fundus photographs based on deep learning algorithm. Translational Vis Sci Technol 8(6):4–4

    Article  Google Scholar 

  52. Li T, Gao Y, Wang K, Guo S, Liu H, Kang H (2019) Diagnostic assessment of deep learning algorithms for diabetic retinopathy screening. Inf Sci 501:511–522

    Article  Google Scholar 

  53. Liao Y et al (2021) Microaneurysm detection in fundus images based on a novel end-to-end convolutional neural network. Biocybern Biomed Eng 41(2):589–604

    Article  Google Scholar 

  54. Lokuarachchi D, Gunarathna K, Muthumal L, Gamage T (2019) Automated detection of exudates in retinal images. In: 2019 IEEE 15th International Colloquium on Signal Processing & Its Applications (CSPA). IEEE, pp 43–47

  55. Messidor dataset. http://www.adcis.net/en/Download-Third-Party/Messidor.htmlindexen

  56. Naqvi SAG, Zafar MF, ul Haq I (2015) Referral system for hard exudates in eye fundus. Comput Biol Med 64:217–235

    Article  Google Scholar 

  57. Nguyen QH, Muthuraman R, Singh L, Sen G, Tran AC, Nguyen BP, Chua M (2020) Diabetic retinopathy detection using deep learning. In: Proceedings of the 4th International conference on machine learning and soft computing, pp 103–107

  58. Nie D, Trullo R, Lian J, Petitjean C, Ruan S, Wang Q, Shen D (2017) Medical image synthesis with context-aware generative adversarial networks. In: International conference on medical image computing and computer-assisted intervention. Springer, pp 417–425

  59. Niu Y, Gu L, Lu F, Lv F, Wang Z, Sato I, Zhang Z, Xiao Y, Dai X, Cheng T (2019) Pathological evidence exploration in deep retinal image diagnosis. In: Proceedings of the AAAI conference on artificial intelligence, vol 33, pp 1093–1101

  60. Noh KJ, Park SJ, Lee S (2019) Scale-space approximated convolutional neural networks for retinal vessel segmentation. Comput Methods Programs Biomed 178:237–246

    Article  Google Scholar 

  61. Pekala M, Joshi N, Liu TA, Bressler NM, DeBuc DC, Burlina P (2019) Deep learning based retinal oct segmentation. Comput Biol Med 114:103445

    Article  Google Scholar 

  62. Prasad DK, Vibha L, Venugopal K (2015) Early detection of diabetic retinopathy from digital retinal fundus images. In: 2015 IEEE Recent Advances in Intelligent Computational Systems (RAICS). IEEE, pp 240–245

  63. Pundikal M, Holi MS (2021) Microaneurysms detection using grey wolf optimizer and modified K-nearest neighbor for early diagnosis of diabetic retinopathy

  64. Purwanithami HA, Sari CA, Rachmawanto EH (2020) Hemorrhage diabetic retinopathy detection based on fundus image using neural network and FCM segmentation. 2020 International Seminar on Application for Technology of Information and Communication (iSemantic). IEEE

  65. Qiao L, Zhu Y, Zhou H (2020) Diabetic retinopathy detection using prognosis of microaneurysm and early diagnosis system for non-proliferative diabetic retinopathy based on deep learning algorithms. IEEE Access 8:104292–104302

    Article  Google Scholar 

  66. Qomariah DUN, Tjandrasa H, Alam BR (2021) Hemorrhage segmentation in retinal images using modified FCN-8. In: 2021 Fourth International Conference on Vocational Education and Electrical Engineering (ICVEE). IEEE

  67. Quellec G, Charrière K, Boudi Y, Cochener B, Lamard M (2017) Deep image mining for diabetic retinopathy screening. Med Image Anal 39:178–193

    Article  Google Scholar 

  68. Qureshi I, Ma J, Shaheed K (2019) A hybrid proposed fundus image enhancement framework for diabetic retinopathy. Algorithms 12(1):14

    Article  Google Scholar 

  69. Rokade PM, Manza RR (2015) Automatic detection of hard exudates in retinal images using haar wavelet transform. eye 4(5):402–410

    Google Scholar 

  70. Sahu S, Singh AK, Ghrera S, Elhoseny M et al (2019) An approach for de-noising and contrast enhancement of retinal fundus image using clahe. Opt Laser Technol 110:87–98

    Article  Google Scholar 

  71. Sampath Dakshina Murthy A, Karthikeyan T, Vinoth Kanna R (2021) Gait-based person fall prediction using deep learning approach. Soft Comput. https://doi.org/10.1007/s00500-021-06125-1

    Article  Google Scholar 

  72. Schlegl T, Seeböck P, Waldstein SM, Schmidt-Erfurth U, Langs G (2017) Unsupervised anomaly detection with generative adversarial networks to guide marker discovery. In: International conference on information processing in medical imaging. Springer, pp 146–157

  73. Scotland GS, McNamee P, Fleming AD, Goatman KA, Philip S, Prescott GJ, Sharp PF, Williams GJ, Wykes W, Leese GP et al (2010) Costs and consequences of automated algorithms versus manual grading for the detection of referable diabetic retinopathy. Br J Ophthalmol 94(6):712–719

    Article  Google Scholar 

  74. Selcuk T, Alkan A (2019) Detection of microaneurysms using ant colony algorithm in the early diagnosis of diabetic retinopathy. Med Hypotheses 129:109242

    Article  Google Scholar 

  75. Shah A, Lynch S, Niemeijer M, Amelon R, Clarida W, Folk J, Russell S, Wu X, Abràmoff MD (2018) Susceptibility to misdiagnosis of adversarial images by deep learning based retinal image analysis algorithms. In: 2018 IEEE 15th International Symposium on Biomedical Imaging (ISBI 2018). IEEE, pp 1454–1457

  76. Shankar K, Sait ARW, Gupta D, Lakshmanaprabu S, Khanna A, Pandey HM (2020) Automated detection and classification of fundus diabetic retinopathy images using synergic deep learning model. Pattern Recognit Lett 133:210–216

    Article  Google Scholar 

  77. Shorten C, Khoshgoftaar TM (2019) A survey on image data augmentation for deep learning. J Big Data 6(1):1–48

    Article  Google Scholar 

  78. Sivaswamy J et al (2018) Retinal image synthesis for cad development. In: International conference image analysis and recognition. Springer, pp 613–621

  79. Son J, Park SJ, Jung K-H (2019) Towards accurate segmentation of retinal vessels and the optic disc in fundoscopic images with generative adversarial networks. J Digit Imaging 32(3):499–512

    Article  Google Scholar 

  80. Soomro TA, Afifi AJ, Gao J, Hellwich O, Zheng L, Paul M (2019) Strided fully convolutional neural network for boosting the sensitivity of retinal blood vessels segmentation. Expert Syst Appl 134:36–52

    Article  Google Scholar 

  81. Stare dataset. http://www.cecas.clemson.edu/~ahoover/stare/

  82. Stolte S, Fang R (2020) A survey on medical image analysis in diabetic retinopathy. Med Image Anal 64:101742

    Article  Google Scholar 

  83. Szegedy C, Vanhoucke V, Ioffe S, Shlens J, Wojna Z (2016) Rethinking the inception architecture for computer vision. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 2818–2826

  84. Tan JH, Fujita H, Sivaprasad S, Bhandary SV, Rao AK, Chua KC, Acharya UR (2017) Automated segmentation of exudates, haemorrhages, microaneurysms using single convolutional neural network. Inf Sci 420:66–76

    Article  Google Scholar 

  85. Taylor R, Batey D (2012) Handbook of retinal screening in diabetes: diagnosis and management. Wiley

  86. Tchinda B, Saha et al (2021) Retinal blood vessels segmentation using classical edge detection filters and the neural network. Inf Med Unlocked 23:100521

    Article  Google Scholar 

  87. Ting DSW, Cheung GCM, Wong TY (2016) Diabetic retinopathy: global prevalence, major risk factors, screening practices and public health challenges: a review. Clin Exp Ophthalmol 44(4):260–277

    Article  Google Scholar 

  88. Uribe-Valencia LJ, Martínez-Carballido JF (2019) Automated optic disc region location from fundus images: Using local multi-level thresholding, best channel selection, and an intensity profile model. Biomed Signal Process Control 51:148–161

    Article  Google Scholar 

  89. Wang S, Tang HL, Hu Y, Sanei S, Saleh GM, Peto T et al (2016) Localizing microaneurysms in fundus images through singular spectrum analysis. IEEE Trans Biomed Eng 64(5):990–1002

    Article  Google Scholar 

  90. Wang Z, Yin Y, Shi J, Fang W, Li H, Wang X (2017) Zoom-in-net: deep mining lesions for diabetic retinopathy detection. In: International conference on medical image computing and computer-assisted intervention. Springer, pp 267–275

  91. Wang X, Lu Y, Wang Y, Chen W-B (2018) Diabetic retinopathy stage classification using convolutional neural networks. In: 2018 IEEE International Conference on Information Reuse and Integration (IRI). IEEE, pp 465–471

  92. Wang L, Liu H, Lu Y, Chen H, Zhang J, Pu J (2019) A coarse-to-fine deep learning framework for optic disc segmentation in fundus images. Biomed Signal Process Control 51:82–89

    Article  Google Scholar 

  93. Wang X, Jiang X, Ren J (2019) Blood vessel segmentation from fundus image by a cascade classification framework. Pattern Recogn 88:331–341

    Article  Google Scholar 

  94. Wang Z et al (2022) A new detection model of microaneurysms based on improved FC-DenseNet. Sci Rep 12(1):1–9

    Google Scholar 

  95. Washington RE, Orchard TJ, Arena VC, LaPorte RE, Secrest AM, Tull ES (2014) All-cause mortality in a population-based type 1 diabetes cohort in the us virgin islands. Diabetes Res Clin Pract 103(3):504–509

    Article  Google Scholar 

  96. Welander P, Karlsson S, Eklund A (2018) Generative adversarial networks for image-to-image translation on multi-contrast mr images-a comparison of cyclegan and unit. arXiv preprint arXiv:1806.07777

  97. Wisaeng K, Sa-Ngiamvibool W (2019) Exudates detection using morphology mean shift algorithm in retinal images. IEEE Access 7:11946–11958

    Article  Google Scholar 

  98. Wu Y, Hu Z (2019) Recognition of diabetic retinopathy basedon transfer learning. In: 2019 IEEE 4th International Conference on Cloud Computing and Big Data Analysis (ICCCBDA). IEEE, pp 398–401

  99. Wu J, Zhang S, Xiao Z, Zhang F, Geng L, Lou S, Liu M (2019) Hemorrhage detection in fundus image based on 2d gaussian fitting and human visual characteristics. Opt Laser Technol 110:69–77

    Article  Google Scholar 

  100. Xia H et al (2021) A multi-scale segmentation-to-classification network for tiny microaneurysm detection in fundus images. Knowl Based Syst 226:107140

    Article  Google Scholar 

  101. Xu K, Feng D, Mi H (2017) Deep convolutional neural network-based early automated detection of diabetic retinopathy using fundus image. Molecules 22(12):2054

    Article  Google Scholar 

  102. Yi X, Walia E, Babyn P (2019) Generative adversarial network in medical imaging: a review. Med Image Anal 58:101552

  103. Yu Z, Xiang Q, Meng J, Kou C, Ren Q, Lu Y (2019) Retinal image synthesis from multiple-landmarks input with generative adversarial networks. Biomed Eng Online 18(1):1–15

    Article  Google Scholar 

  104. Yun WL, Acharya UR, Venkatesh YV, Chee C, Min LC, Ng EYK (2008) Identification of different stages of diabetic retinopathy using retinal optical images. Inf Sci 178(1):106–121

    Article  Google Scholar 

  105. Zhao G, Fu D, Yang T (2022) A deep learning method for microaneurysms segmentation in fundus images. In: Jia Y, Zhang W, Fu Y, Yu Z, Zheng S (eds) Proceedings of 2021 Chinese intelligent systems conference. Lecture notes in electrical engineering, vol 805. Springer, Singapore. https://doi.org/10.1007/978-981-16-6320-8_79

  106. Zhou W, Wu C, Chen D, Yi Y, Du W (2017) Automatic microaneurysm detection using the sparse principal component analysis-based unsupervised classification method. IEEE Access 5:2563–2572

    Article  Google Scholar 

  107. Zhou K, Gao S, Cheng J, Gu Z, Fu H, Tu Z, Yang J, Zhao Y, Liu J (2020) Sparse-gan: sparsity-constrained generative adversarial network for anomaly detection in retinal oct image. In: 2020 IEEE 17th International Symposium on Biomedical Imaging (ISBI). IEEE, 1227–1231

  108. Zhou Y, Chen Z, Shen H, Zheng X, Zhao R, Duan X (2021) A refined equilibrium generative adversarial network for retinal vessel segmentation. Neurocomputing 437:118–130

    Article  Google Scholar 

Download references

Funding

This study is not funded by any agency.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aruna Bhat.

Ethics declarations

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Agarwal, S., Bhat, A. A survey on recent developments in diabetic retinopathy detection through integration of deep learning. Multimed Tools Appl 82, 17321–17351 (2023). https://doi.org/10.1007/s11042-022-13837-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11042-022-13837-5

Keywords

Navigation