Skip to main content
Log in

Efficient classification of the hyperspectral images using deep learning

  • Published:
Multimedia Tools and Applications Aims and scope Submit manuscript

Abstract

Classification techniques applicable to the hyperspectral images do not extract deep features from the hyperspectral image efficiently. In this work, a deep learning approach is proposed to extract the deep features, and these features are utilized to propose a novel framework for classification of the hyperspectral image. The framework uses LPP, DCNN and logistic regression. Data of a hyperspectral image is processed by LPP for dimensionality reduction as it contains a large number of dimensions. Afterward, a DCNN is constructed with Autoencoders which is then passed to the logistic regression for classification. Proposed framework is tested on Indian Pines and Salinas data sets. High accuracy is achieved using the proposed framework in comparison of existing machine learning models.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Aldrich J, Fisher RA (1997) The making of maximum likelihood 1912–1922. Stat Sci 12(3):162–176

    Article  MathSciNet  Google Scholar 

  2. Andrychowicz M, Denil M, Gomez S, Hoffman M W, Pfau D, Schaul T, de Freitas N (2016) Learning to learn by gradient descent by gradient descent. In: Neural information processing systems, pp 1–17

  3. Burger JE, Gowen AA (2011) The interplay of chemometrics and hyperspectral chemical imaging. In: Workshop on hyperspectral image and signal processing, evolution in remote sensing, pp 3–6

  4. Burges CJC (1998) A tutorial on support vector machines for pattern recognition. Data Min Knowl Discov 2(2):121–167

    Article  Google Scholar 

  5. Camps-Valls G, Bruzzone L (2005) Kernel based methods for hyperspectral image classification. IEEE Trans Geosci Remote Sens 43(6):1351–1362

    Article  Google Scholar 

  6. Chang C-I (2004) New hyperspectral discrimination measure for spectral characterization. Opt Eng 43(8):1777

    Article  Google Scholar 

  7. Chen Y, Lin Z, Zhao X, Member S, Wang G, Gu Y (2014) Deep learning-based classification of hyperspectral data. IEEE J Sel Top Appl Earth Obs Remote Sens 7(6):2094–2107

    Article  Google Scholar 

  8. Fagan ME, DeFries RS, Sesnie SE, Arroyo-Mora JP, Soto C, Singh A, Chazdon (2015) Mapping species composition of forests and tree plantations in northeastern Costa Rica with an Integration of Hyperspectral and Multitemporal Landsat Imagery. Remote Sens 7(5):5660–5696

    Article  Google Scholar 

  9. Greene WWH (2012) Econometric analysis, vol 97. Prentice Hall, Englewood Cliffs

    Google Scholar 

  10. He X, Niyogi P (2004) Locality preserving projections. Adv Neural Inf Process Syst 16:153

    Google Scholar 

  11. Hecht-Nielsen R (1989) Theory of the backpropagation neural network. In: Proceedings of the international joint conference on neural networks, vol 1, pp 593–605

  12. Ivakhnenko AG, Lapa VG (1965) Cybernetic predicting devices. CCM Information Corporation, New York

    Google Scholar 

  13. Jolliffe IT (1986) Principal component. Springer series in statistics analysis. Springer, Berlin

    Book  Google Scholar 

  14. Kohonen T (1988) An introduction to neural computing. Neural Netw 1(1):3–16

    Article  Google Scholar 

  15. Krizhevsky A, Sutskever I, Hinton GE (2012) ImageNet classification with deep convolutional neural networks. In: Advances in neural information processing systems, pp 1–9

  16. Kruger N, Janssen P, Kalkan S, Lappe M, Leonardis A, Piater J, Wiskott L (2013) Deep hierarchies in the primate visual cortex: what can we learn for computer vision?. IEEE Trans Pattern Anal Mach Intell 35(8):1847–1871

    Article  Google Scholar 

  17. Kruse FA, Lefkoff AB, Boardman JW, Heidebrecht KB, Shapiro AT, Barloon PJ, Goetz AFH (1993) The Spectral Image Processing System (SIPS) - interactive visualization and analysis of imaging spectrometer data. Remote Sens Environ 44:145–163

    Article  Google Scholar 

  18. Kruse FA, Boardman JW, Huntington JF (2003) Comparison of airborne hyperspectral data and EO-1 hyperion for mineral mapping. IEEE Trans Geosci Remote Sens 41(6 PART I):1388–1400

    Article  Google Scholar 

  19. Kumar M, Seshasai MVR, Vara Prasad KS, Kamala V, Ramana KV, Dwivedi RS, Roy PS (2011) A new hybrid spectral similarity measure for discrimination among Vigna species. Int J Remote Sens 32(14):4041–4053

    Article  Google Scholar 

  20. Le Roux N, Bengio Y (2010) Deep belief networks are compact universal approximators. Neural Comput 22(8):2192–2207

    Article  MathSciNet  Google Scholar 

  21. Melgani F, Bruzzone L (2002) Support vector machines for Classification of hyperspectral remote-sensing images. In: IEEE international geoscience and remote sensing symposium, vol 1, pp 506–508

  22. Roweis ST, Saul LK (2000) Nonlinear dimensionality reduction by locally linear embedding. Science (New York, N.Y.) 290(5500):2323–2326

    Article  Google Scholar 

  23. Sutskever I, Hinton GE (2008) Deep, narrow sigmoid belief networks are universal approximators. Neural Comput 20(11):2629–2636

    Article  Google Scholar 

  24. Tenenbaum JB, De Silva V, Langford JC (2000) Sci Reprint 290:2319–2323

  25. Tobergte DR, Curtis S (2013) Laplacian Eigenmap. J Chem Inf Model 53 (9):1689–1699

    Google Scholar 

  26. Vane G, Green RO (1993) The airborne visible/infrared imaging spectrometer (AVIRIS). Remote Sens Environ 44(3):127–143

    Article  Google Scholar 

  27. Wu S, Zhong S, Liu Y (2017) Deep residual learning for image steganalysis. In: Multimedia tools and applications, pp 1–17

    Article  Google Scholar 

  28. Yan C, Zhang Y, Xu J, Dai F, Li L, Dai Q, Wu F (2014) A highly parallel framework for HEVC coding unit partitioning tree decision on many-core processors. IEEE Signal Process Lett 21(5):573–576

    Article  Google Scholar 

  29. Yan C, Zhang Y, Xu J, Dai F, Zhang J, Dai Q, Wu F (2014) Efficient parallel framework for HEVC motion estimation on many-core processors. IEEE Trans Circuits Syst Video Technol 24(12):2077–2089

    Article  Google Scholar 

  30. Yan C, Xie H, Liu S, Yin J, Zhang Y, Dai Q (2018) Effective Uyghur language text detection in complex background images for traffic prompt identification. IEEE Trans Intell Transp Syst 19(1):220–229

    Article  Google Scholar 

  31. Yan C, Xie H, Yang D, Yin J, Zhang Y (2018) Supervised hash coding with deep neural network for environment perception of intelligent vehicles. IEEE Trans Intell Transp Syst 19(1):284–295

    Article  Google Scholar 

  32. Yang C, Everitt JH, Bradford JM (2008) Yield estimation from hyperspectral imagery using Spectral Angle Mapper (SAM). Trans ASABE 51(2):729–737

    Article  Google Scholar 

  33. Yue J, Mao S, Li M (2016) A deep learning framework for hyperspectral image classification using spatial pyramid pooling. Remote Sens Lett 7(9):875–884

    Article  Google Scholar 

  34. Zanaty EA (2012) Support Vector Machines (SVMs) versus Multilayer Perception (MLP) in data classification. Egypt Inf J 13(3):177–183

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Simranjit Singh.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Singh, S., Kasana, S.S. Efficient classification of the hyperspectral images using deep learning. Multimed Tools Appl 77, 27061–27074 (2018). https://doi.org/10.1007/s11042-018-5904-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11042-018-5904-x

Keywords

Navigation