Skip to main content

Advertisement

Log in

Molecular pathways involved in microRNA-mediated regulation of multidrug resistance

  • Review
  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Multidrug resistance (MDR) is still a major reason for therapeutic failure in cancers. The mechanisms underlying MDR are multifactorial and are not fully understood. miRNAs are evolutionarily conserved non-coding RNAs that function as key post-transcriptional regulators of gene expression. Emerging evidence indicates a vital role of miRNAs in the resistance to cancer treatments and suggests their potential for cancer therapy, as they can modulate multiple mechanisms link to the development of MDR. This review summarizes the recent findings on the role of miRNAs in MDR, and highlights the molecular targets and mechanisms of miRNA regulated pathways in MDR. Finally, the challenges and prospects of miRNA-targeted therapies for reversing drug resistance are reviewed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Szakács G, Paterson JK, Ludwig JA et al (2006) Targeting multidrug resistance in cancer. Nat Rev Drug Discov 5:219–234

    Article  PubMed  Google Scholar 

  2. Gomes BC, Rueff J, Rodrigues AS (2016) MicroRNAs and cancer drug resistance. Methods Mol Biol 1395:137–162. https://doi.org/10.1007/978-1-4939-3347-1_9

    Article  CAS  PubMed  Google Scholar 

  3. Lee Y, Ahn C, Han J et al (2003) The nuclear RNase III Drosha initiates microRNA processing. Nature 425:415–419

    Article  CAS  PubMed  Google Scholar 

  4. Bartel DP (2004) MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 116:281–297

    Article  CAS  PubMed  Google Scholar 

  5. Fojo T (2007) Multiple paths to a drug resistance phenotype: mutations, translocations, deletions and amplification of coding genes or promoter regions, epigenetic changes and microRNAs. Drug Resist Updat 10:59–67. https://doi.org/10.1016/j.drup.2007.02.002

    Article  CAS  PubMed  Google Scholar 

  6. van Jaarsveld MT, Helleman J, Berns EM et al (2010) MicroRNAs in ovarian cancer biology and therapy resistance. Int J Biochem Cell Biol 42:1282–1290. https://doi.org/10.1016/j.biocel.2010.01.014

    Article  CAS  PubMed  Google Scholar 

  7. Zheng T, Wang J, Chen X et al (2010) Role of microRNA in anticancer drug resistance. Int J Cancer 126:2–10. https://doi.org/10.1002/ijc.24782

    Article  CAS  PubMed  Google Scholar 

  8. Gottesman MM, Fojo T, Bates SE (2002) Multidrug resistance in cancer: role of ATP-dependent transporters. Nat Rev Cancer 2:48–58

    Article  CAS  PubMed  Google Scholar 

  9. Lage H (2003) ABC-transporters: implications on drug resistance from microorganisms to human cancers. Int J Antimicrob Agents 22:188–199

    Article  CAS  PubMed  Google Scholar 

  10. Dean M, Rzhetsky A, Allikmets R (2001) The human ATP-binding cassette (ABC) transporter superfamily. Genome Res 11(7):1156–1166

    Article  CAS  PubMed  Google Scholar 

  11. Zhu H, Wu H, Liu X et al (2008) Role of MicroRNA miR-27a and miR-451 in the regulation of MDR1/P-glycoprotein expression in human cancer cells. Biochem Pharmacol 76:582–588. https://doi.org/10.1016/j.bcp.2008.06.007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Yang L, Li N, Wang H et al (2012) Altered microRNA expression in cisplatin-resistant ovarian cancer cells and upregulation of miR-130a associated with MDR1/P-glycoprotein-mediated drug resistance. Oncol Rep 28:592–600. https://doi.org/10.3892/or.2012.1823

    Article  CAS  PubMed  Google Scholar 

  13. Wang F, Li T, Zhang B et al (2013) MicroRNA-19a/b regulates multidrug resistance in human gastric cancer cells by targeting PTEN. Biochem Biophys Res Commun 434(3):688–694. https://doi.org/10.1016/j.bbrc.2013.04.010

    Article  CAS  PubMed  Google Scholar 

  14. Kovalchuk O, Filkowski J, Meservy J et al (2008) Involvement of microRNA-451 in resistance of the MCF-7 breast cancer cells to chemotherapeutic drug doxorubicin. Mol Cancer Ther 7:2152–2159. https://doi.org/10.1158/1535-7163.MCT-08-0021

    Article  CAS  PubMed  Google Scholar 

  15. Chen J, Tian W, Cai H et al (2012) Down-regulation of microRNA-200c is associated with drug resistance in human breast cancer. Med Oncol 29(4):2527–2534. https://doi.org/10.1007/s12032-011-0117-4

    Article  CAS  PubMed  Google Scholar 

  16. Lu C, Shan Z, Li C et al (2017) MiR-129 regulates cisplatin-resistance in human gastric cancer cells by targeting P-gp. Biomed Pharmacother 86:450–456. https://doi.org/10.1016/j.biopha.2016.11.139

    Article  CAS  PubMed  Google Scholar 

  17. Yang X, Ren W, Shao Y et al (2017) MiR-466b-1-3p regulates P-glycoprotein expression in rat cerebral microvascular endothelial cells. Neurosci Lett 645:60–66. https://doi.org/10.1016/j.neulet.2017.02.044

    Article  CAS  PubMed  Google Scholar 

  18. Zhou H, Lin C, Zhang Y et al (2017) miR-506 enhances the sensitivity of human colorectal cancer cells to oxaliplatin by suppressing MDR1/P-gp expression. Cell Prolif 50(3):e12341. https://doi.org/10.1111/cpr.12341

    Article  CAS  PubMed Central  Google Scholar 

  19. Bao L, Hazari S, Mehra S et al (2012) Increased expression of P-glycoprotein and doxorubicin chemoresistance of metastatic breast cancer is regulated by miR-298. Am J Pathol 180(6):2490–2503. https://doi.org/10.1016/j.ajpath.2012.02.024

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Xu K, Liang X, Shen K et al (2012) miR-297 modulates multidrug resistance in human colorectal carcinoma by down-regulating MRP-2. Biochem J 446:291–300. https://doi.org/10.1042/BJ20120386

    Article  CAS  PubMed  Google Scholar 

  21. Jiao X, Zhao L, Ma M et al (2013) MiR-181a enhances drug sensitivity in mitoxantone-resistant breast cancer cells by targeting breast cancer resistance protein (BCRP/ABCG2). Breast Cancer Res Treat 139:717–730. https://doi.org/10.1007/s10549-013-2607-x

    Article  CAS  PubMed  Google Scholar 

  22. Ma MT, He M, Wang Y et al (2013) MiR-487a resensitizes mitoxantrone (MX)-resistant breast cancer cells (MCF-7/MX) to MX by targeting breast cancer resistance protein (BCRP/ABCG2). Cancer Lett 339:107–115. https://doi.org/10.1016/j.canlet.2013.07.016

    Article  CAS  PubMed  Google Scholar 

  23. Yang G, Jiang O, Ling D et al (2015) MicroRNA-522 reverses drug resistance of doxorubicin-induced HT29 colon cancer cell by targeting ABCB5. Mol Med Rep 12:3930–3936. https://doi.org/10.3892/mmr.2015.3890

    Article  CAS  PubMed  Google Scholar 

  24. Shi L, Wang Z, Sun G et al (2014) miR-145 inhibits migration and invasion of glioma stem cells by targeting ABCG2. Neuromol Med 16(2):517–528. https://doi.org/10.1007/s12017-014-8305-y

    Article  CAS  Google Scholar 

  25. Pei K, Zhu JJ, Wang CE et al (2016) MicroRNA-185-5p modulates chemosensitivity of human non-small cell lung cancer to cisplatin via targeting ABCC1. Eur Rev Med Pharmacol Sci 20:4697–4704

    CAS  PubMed  Google Scholar 

  26. Shang Y, Zhang Z, Liu Z et al (2014) miR-508-5p regulates multidrug resistance of gastric cancer by targeting ABCB1 and ZNRD1. Oncogene 33:3267–3276

    Article  CAS  PubMed  Google Scholar 

  27. To KK, Leung WW, Ng SS (2015) Exploiting a novel miR-519c-HuR-ABCG2 regulatory pathway to overcome chemoresistance in colorectal cancer. Exp Cell Res 338(2):222–231. https://doi.org/10.1016/j.yexcr.2015.09.011

    Article  CAS  PubMed  Google Scholar 

  28. Tarasov V, Jung P, Verdoodt B et al (2007) Differential regulation of microRNAs by p53 revealed by massively parallel sequencing: miR-34a is a p53 target that induces apoptosis and G1-arrest. Cell Cycle 6(13):1586–1593

    Article  CAS  PubMed  Google Scholar 

  29. Chen JJ, Liu SX, Chen MZ et al (2015) Has–miR-125a and 125b are induced by treatment with cisplatin in nasopharyngeal carcinoma and inhibit apoptosis in a p53-dependent manner by targeting p53 mRNA. Mol Med Rep 12(3):3569–3574. https://doi.org/10.3892/mmr.2015.3863

    Article  CAS  PubMed  Google Scholar 

  30. Zhang Y, Geng L, Talmon G et al (2015) MicroRNA-520 g confers drug resistance by regulating p21 expression in colorectal cancer. J Biol Chem 290(10):6215–6225. https://doi.org/10.1074/jbc.M114.620252

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Bommer GT, Gerin I, Feng Y et al (2007) p53-mediated activation of miRNA34 candidate tumor-suppressor genes. Curr Biol 17:1298–1307

    Article  CAS  PubMed  Google Scholar 

  32. Akao Y, Noguchi S, Iio A et al (2011) Dysregulation of microRNA-34a expression causes drug-resistance to 5-FU in human colon cancer DLD-1 cells. Cancer Lett 300(2):197–204. https://doi.org/10.1016/j.canlet.2010.10.006

    Article  CAS  PubMed  Google Scholar 

  33. Fan YN, Meley D, Pizer B et al (2014) Mir-34a mimics are potential therapeutic agents for p53-mutated and chemo-resistant brain tumour cells. PLoS ONE 9(9):e108514. https://doi.org/10.1371/journal.pone.0108514

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Kastl L, Brown I, Schofield A (2012) miRNA-34a is associated with docetaxel resistance in human breast cancer cells. Breast Cancer Res Treat 131(2):445–454. https://doi.org/10.1007/s10549-011-1424-3

    Article  CAS  PubMed  Google Scholar 

  35. Li Q, Liang X, Wang Y et al (2016) miR-139-5p inhibits the epithelial-mesenchymal transition and enhances the chemotherapeutic sensitivity of colorectal cancer cells by downregulating BCL2. Sci Rep 6:27157. https://doi.org/10.1038/srep27157

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Zhuang M, Shi Q, Zhang X et al (2015) Involvement of miR-143 in cisplatin resistance of gastric cancer cells via targeting IGF1R and BCL2. Tumour Biol 36(4):2737–2745. https://doi.org/10.1007/s13277-014-2898-5

    Article  CAS  PubMed  Google Scholar 

  37. Wang T, Ge G, Ding Y et al (2014) MiR-503 regulates cisplatin resistance of human gastric cancer cell lines by targeting IGF1R and BCL2. Chin Med J (Engl) 127(12):2357–2362

    CAS  Google Scholar 

  38. Yang M, Shan X, Zhou X et al (2014) miR-1271 regulates cisplatin resistance of human gastric cancer cell lines by targeting IGF1R, IRS1, mTOR, and BCL2. Anticancer Agents Med Chem 14:884–891

    Article  CAS  PubMed  Google Scholar 

  39. Yang D, Zhan M, Chen T et al (2017) miR-125b-5p enhances chemotherapy sensitivity to cisplatin by down-regulating Bcl2 in gallbladder cancer. Sci Rep 7:43109. https://doi.org/10.1038/srep43109

    Article  PubMed  PubMed Central  Google Scholar 

  40. Wang H, Zhu LJ, Yang YC et al (2014) MiR-224 promotes the chemoresistance of human lung adenocarcinoma cells to cisplatin via regulating G1/S transition and apoptosis by targeting p21WAF1/CIP1. Br J Cancer. https://doi.org/10.1038/bjc.2014.157

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Xu S, Huang H, Chen Y et al (2016) DNA damage responsive miR-33b-3p promoted lung cancer cells survival and cisplatin resistance by targeting p21WAF1/CIP1. Cell Cycle 15(21):2920–2930

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Xu B, Niu X, Zhang X et al (2011) miR-143 decreases prostate cancer cells proliferation and migration and enhances their sensitivity to docetaxel through suppression of KRAS. Mol Cell Biochem 350(1–2):207–213. https://doi.org/10.1007/s11010-010-0700-6

    Article  CAS  PubMed  Google Scholar 

  43. van Jaarsveld M, van Kuijk P, Boersma A et al (2015) miR-634 restores drug sensitivity in resistant ovarian cancer cells by targeting the Ras-MAPK pathway. Mol Cancer 14:196. https://doi.org/10.1186/s12943-015-0464-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Cao W, Yang W, Fan R et al (2014) miR-34a regulates cisplatin-induce gastric cancer cell death by modulating PI3K/AKT/survivin pathway. Tumour Biol 35(2):1287–1295. https://doi.org/10.1007/s13277-013-1171-7

    Article  CAS  PubMed  Google Scholar 

  45. Rao E, Jiang C, Ji M et al (2012) The miRNA-17∼92 cluster mediates chemoresistance and enhances tumor growth in mantle cell lymphoma via PI3K/AKT pathway activation. Leukemia 26(5):1064–1072. https://doi.org/10.1038/leu.2011.305

    Article  CAS  PubMed  Google Scholar 

  46. Zhao G, Cai C, Yang T et al (2013) MicroRNA-221 induces cell survival and cisplatin resistance through PI3K/Akt pathway in human osteosarcoma. PLoS ONE 8(1):e53906. https://doi.org/10.1371/journal.pone.0053906

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Zhao M, Luo R, Liu Y et al (2016) miR-3188 regulates nasopharyngeal carcinoma proliferation and chemosensitivity through a FOXO1-modulated positive feedback loop with mTOR-p-PI3K/AKT-c-JUN. Nat Commun 7:11309. https://doi.org/10.1038/ncomms11309

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Jeong J, Kang H, Kim T et al (2017) MicroRNA-136 inhibits cancer stem cell activity and enhances the anti-tumor effect of paclitaxel against chemoresistant ovarian cancer cells by targeting Notch3. Cancer Lett 386:168–178. https://doi.org/10.1016/j.canlet.2016.11.017

    Article  CAS  PubMed  Google Scholar 

  49. Giovannetti E, Erozenci A, Smit J et al (2012) Molecular mechanisms underlying the role of microRNAs (miRNAs) in anticancer drug resistance and implications for clinical practice. Crit Rev Oncol Hematol 81(2):103–122. https://doi.org/10.1016/j.critrevonc.2011.03.010

    Article  PubMed  Google Scholar 

  50. He X, Xiao X, Dong L et al (2015) MiR-218 regulates cisplatin chemosensitivity in breast cancer by targeting BRCA1. Tumour Biol 36(3):2065–2075. https://doi.org/10.1007/s13277-014-2814-z

    Article  CAS  PubMed  Google Scholar 

  51. Tan X, Peng J, Fu Y et al (2014) miR-638 mediated regulation of BRCA1 affects DNA repair and sensitivity to UV and cisplatin in triple-negative breast cancer. Breast Cancer Res 16(5):435. https://doi.org/10.1186/s13058-014-0435-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Moskwa P, Buffa FM, Pan Y et al (2011) miR-182-mediated downregulation of BRCA1 impacts DNA repair and sensitivity to PARP inhibitors. Mol Cell 41:210–220. https://doi.org/10.1016/j.molcel.2010.12.005

    Article  CAS  PubMed  Google Scholar 

  53. Sun C, Li N, Yang Z et al (2013) miR-9 regulation of BRCA1 and ovarian cancer sensitivity to cisplatin and PARP inhibition. J Natl Cancer Inst 105:1750–1758. https://doi.org/10.1093/jnci/djt302

    Article  CAS  PubMed  Google Scholar 

  54. Xiao M, Cai J, Cai L et al (2017) Let-7e sensitizes epithelial ovarian cancer to cisplatin through repressing DNA double strand break repair. J Ovarian Res 10(1):24. https://doi.org/10.1186/s13048-017-0321-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Choi YE, Meghani K, Brault ME et al (2016) Platinum and PARP inhibitor resistance due to overexpression of microRNA-622 in BRCA1-mutant ovarian cancer. Cell Rep 14:429–439. https://doi.org/10.1016/j.celrep.2015.12.046

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Meghani K, Fuchs W, Detappe A et al (2018) Multifaceted impact of microRNA 493-5p on genome-stabilizing pathways induces platinum and PARP inhibitor resistance in BRCA2-mutated carcinomas. Cell Rep 23:100–111. https://doi.org/10.1016/j.celrep.2018.03.038

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Reardon JT, Vaisman A, Chaney SG et al (1999) Efficient nucleotide excision repair of cisplatin, oxaliplatin, and Bis-aceto-ammine-dichloro-cyclohexylamine-platinum(IV) (JM216) platinum intrastrand DNA diadducts. Cancer Res 59:3968–3971

    CAS  PubMed  Google Scholar 

  58. Liu RL, Dong Y, Deng YZ et al (2015) Tumor suppressor miR-145 reverses drug resistance by directly targeting DNA damage-related gene RAD18 in colorectal cancer. Tumour Biol 36:5011–5019. https://doi.org/10.1007/s13277-015-3152-5

    Article  CAS  PubMed  Google Scholar 

  59. Valeri N, Gasparini P, Braconi C et al (2010) MicroRNA-21 induces resistance to 5-fluorouracil by down-regulating human DNA MutS homolog 2 (hMSH2). Proc Natl Acad Sci USA 107:21098–21103. https://doi.org/10.1073/pnas.1015541107

    Article  PubMed  PubMed Central  Google Scholar 

  60. Tili E, Michaille JJ, Wernicke D et al (2011) Mutator activity induced by microRNA-155 (miR-155) links inflammation and cancer. Proc Natl Acad Sci USA 108:4908–4913. https://doi.org/10.1073/pnas.1101795108

    Article  PubMed  PubMed Central  Google Scholar 

  61. Ye L, Jiang T, Shao H et al (2017) miR-1290 is a biomarker in DNA-mismatch-repair-deficient colon cancer and promotes resistance to 5-Fluorouracil by directly targeting hMSH2. Mol Ther Nucleic Acids 7:453–464. https://doi.org/10.1016/j.omtn.2017.05.006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Vinod B, Maliekal T, Anto R (2013) Phytochemicals as chemosensitizers: from molecular mechanism to clinical significance. Antioxid Redox Signal 18(11):1307–1348. https://doi.org/10.1089/ars.2012.4573

    Article  CAS  PubMed  Google Scholar 

  63. Li YJ, Lei YH, Yao N et al (2017) Autophagy and multidrug resistance in cancer. Chin J Cancer 36:52. https://doi.org/10.1186/s40880-017-0219-2

    Article  PubMed  PubMed Central  Google Scholar 

  64. O’Donovan T, O’Sullivan G, McKenna S (2011) Induction of autophagy by drug-resistant esophageal cancer cells promotes their survival and recovery following treatment with chemotherapeutics. Autophagy 7:509–524

    Article  PubMed  PubMed Central  Google Scholar 

  65. Zhu H, Wu H, Liu X et al (2009) Regulation of autophagy by a beclin 1-targeted microRNA, miR-30a, in cancer cells. Autophagy 5:816–823

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Zheng B, Zhu H, Gu D et al (2015) MiRNA-30a-mediated autophagy inhibition sensitizes renal cell carcinoma cells to sorafenib. Biochem Biophys Res Commun 459(2):234–239. https://doi.org/10.1016/j.bbrc.2015.02.084

    Article  CAS  PubMed  Google Scholar 

  67. Xu R, Liu S, Chen H et al (2016) MicroRNA-30a downregulation contributes to chemoresistance of osteosarcoma cells through activating Beclin-1-mediated autophagy. Oncol Rep 35(3):1757–1763. https://doi.org/10.3892/or.2015.4497

    Article  CAS  PubMed  Google Scholar 

  68. Zhang R, Xu J, Zhao J et al (2017) Mir-30d suppresses cell proliferation of colon cancer cells by inhibiting cell autophagy and promoting cell apoptosis. Tumour Biol 39(6):1010428317703984. https://doi.org/10.1177/1010428317703984

    Article  PubMed  Google Scholar 

  69. Lai L, Chen J, Wang N et al (2017) MiRNA-30e mediated cardioprotection of ACE2 in rats with Doxorubicin-induced heart failure through inhibiting cardiomyocytes autophagy. Life Sci 169:69–75. https://doi.org/10.1016/j.lfs.2016.09.006

    Article  CAS  PubMed  Google Scholar 

  70. Wang C, Zhang Z, Yang W et al (2017) MiR-210 facilitates ECM degradation by suppressing autophagy via silencing of ATG7 in human degenerated NP cells. Biomed Pharmacother 93:470–479. https://doi.org/10.1016/j.biopha.2017.06.048

    Article  CAS  PubMed  Google Scholar 

  71. Comincini S, Allavena G, Palumbo S et al (2013) microRNA-17 regulates the expression of ATG7 and modulates the autophagy process, improving the sensitivity to temozolomide and low-dose ionizing radiation treatments in human glioblastoma cells. Cancer Biol Ther 14(7):574–586. https://doi.org/10.4161/cbt.24597

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. An Y, Zhang Z, Shang Y et al (2015) miR-23b-3p regulates the chemoresistance of gastric cancer cells by targeting ATG12 and HMGB2. Cell Death Dis 6:e1766. https://doi.org/10.1038/cddis.2015.123

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Chen R, Li X, He B et al (2017) MicroRNA-410 regulates autophagy-related gene ATG16L1 expression and enhances chemosensitivity via autophagy inhibition in osteosarcoma. Mol Med Rep 15(3):1326–1334. https://doi.org/10.3892/mmr.2017.6149

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Seca H, Lima R, Lopes-Rodrigues V et al (2013) Targeting miR-21 induces autophagy and chemosensitivity of leukemia cells. Curr Drug Targets 14:1135–1143

    Article  CAS  PubMed  Google Scholar 

  75. Chatterjee A, Chattopadhyay D, Chakrabarti G (2015) MiR-16 targets Bcl-2 in paclitaxel-resistant lung cancer cells and overexpression of miR-16 along with miR-17 causes unprecedented sensitivity by simultaneously modulating autophagy and apoptosis. Cell Signal 27(2):189–203. https://doi.org/10.1016/j.cellsig.2014.11.023

    Article  CAS  PubMed  Google Scholar 

  76. Zhang H, Tang J, Li C et al (2015) MiR-22 regulates 5-FU sensitivity by inhibiting autophagy and promoting apoptosis in colorectal cancer cells. Cancer Lett 356(2 Pt B):781–790. https://doi.org/10.1016/j.canlet.2014.10.029

    Article  CAS  PubMed  Google Scholar 

  77. He C, Dong X, Zhai B et al (2015) MiR-21 mediates sorafenib resistance of hepatocellular carcinoma cells by inhibiting autophagy via the PTEN/Akt pathway. Oncotarget 6(30):28867–28881. https://doi.org/10.18632/oncotarget.4814

    Article  PubMed  PubMed Central  Google Scholar 

  78. Shi Y, Zhao Y, Shao N et al (2017) Overexpression of microRNA-96-5p inhibits autophagy and apoptosis and enhances the proliferation, migration and invasiveness of human breast cancer cells. Oncol Lett 13(6):4402–4412. https://doi.org/10.3892/ol.2017.6025

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Bao L, Lv L, Feng J et al (2016) miR-487b-5p regulates temozolomide resistance of lung cancer cells through LAMP2-medicated autophagy. DNA Cell Biol 35(8):385–392. https://doi.org/10.1089/dna.2016.3259

    Article  CAS  PubMed  Google Scholar 

  80. Tsuchiya Y, Nakajima M, Takagi S et al (2006) MicroRNA regulates the expression of human cytochrome P450 1B1. Cancer Res 66:9090–9098

    Article  CAS  PubMed  Google Scholar 

  81. Rieger J, Reutter S, Hofmann U et al (2015) Inflammation-associated microRNA-130b down-regulates cytochrome P450 activities and directly targets CYP2C9. Drug Metab Dispos 43(6):884–888. https://doi.org/10.1124/dmd.114.062844

    Article  CAS  PubMed  Google Scholar 

  82. Nakano M, Fukushima Y, Yokota S et al (2015) CYP2A7 pseudogene transcript affects CYP2A6 expression in human liver by acting as a decoy for miR-126. Drug Metab Dispos 43(5):703–712. https://doi.org/10.1124/dmd.115.063255

    Article  CAS  PubMed  Google Scholar 

  83. Pan Y, Gao W, Yu A (2009) MicroRNAs regulate CYP3A4 expression via direct and indirect targeting. Drug Metab Dispos 37(10):2112–2117. https://doi.org/10.1124/dmd.109.027680

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Vachirayonstien T, Yan B (2016) MicroRNA-30c-1-3p is a silencer of the pregnane X receptor by targeting the 3′-untranslated region and alters the expression of its target gene cytochrome P450 3A4. Biochim Biophys Acta 1859(9):1238–1244. https://doi.org/10.1016/j.bbagrm.2016.03.016

    Article  CAS  PubMed  Google Scholar 

  85. Wang L, Li C, Li R et al (2016) MicroRNA-764-3p regulates 17β-estradiol synthesis of mouse ovarian granulosa cells by targeting steroidogenic factor-1. In Vitro Cell Dev Biol Anim 52(3):365–373. https://doi.org/10.1007/s11626-015-9977-9

    Article  CAS  PubMed  Google Scholar 

  86. Sharma D, Turkistani A, Chang W et al (2017) Negative regulation of human pregnane x receptor by microRNA-18a-5p: evidence for suppression of microRNA-18a-5p expression by rifampin and rilpivirine. Mol Pharmacol 92(1):48–56. https://doi.org/10.1124/mol.116.107003

    Article  CAS  PubMed  Google Scholar 

  87. Kawahara K, Nakayama H, Nagata M et al (2014) A low Dicer expression is associated with resistance to 5-FU-based chemoradiotherapy and a shorter overall survival in patients with oral squamous cell carcinoma. J Oral Pathol Med 43:350–356. https://doi.org/10.1111/jop.12140

    Article  CAS  PubMed  Google Scholar 

  88. Cai L, Wang Z, Liu D (2016) Interference with endogenous EZH2 reverses the chemotherapy drug resistance in cervical cancer cells partly by up-regulating Dicer expression. Tumour Biol 37:6359–6369. https://doi.org/10.1007/s13277-015-4416-9

    Article  CAS  PubMed  Google Scholar 

  89. Chen JC, Su YH, Chiu CF et al (2014) Suppression of Dicer increases sensitivity to gefitinib in human lung cancer cells. Ann Surg Oncol 21(Suppl 4):S555–S563. https://doi.org/10.1245/s10434-014-3673-y

    Article  PubMed  Google Scholar 

  90. Bu Y, Lu C, Bian C et al (2009) Knockdown of Dicer in MCF-7 human breast carcinoma cells results in G1 arrest and increased sensitivity to cisplatin. Oncol Rep 21:13–17

    CAS  PubMed  Google Scholar 

  91. Munoz JL, Rodriguez-Cruz V, Ramkissoon SH et al (2015) Temozolomide resistance in glioblastoma occurs by miRNA-9-targeted PTCH1, independent of sonic hedgehog level. Oncotarget 6:1190–1201. https://doi.org/10.18632/oncotarget.2778

    Article  PubMed  PubMed Central  Google Scholar 

  92. Sha LY, Zhang Y, Wang W et al (2016) MiR-18a upregulation decreases Dicer expression and confers paclitaxel resistance in triple negative breast cancer. Eur Rev Med Pharmacol Sci 20:2201–2208

    PubMed  Google Scholar 

  93. Geretto M, Pulliero A, Rosano C et al (2017) Resistance to cancer chemotherapeutic drugs is determined by pivotal microRNA regulators. Am J Cancer Res 7:1350–1371

    CAS  PubMed  PubMed Central  Google Scholar 

  94. Sun HL, Cui R, Zhou J et al (2016) ERK activation globally downregulates miRNAs through phosphorylating exportin-5. Cancer Cell 30:723–736. https://doi.org/10.1016/j.ccell.2016.10.001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Chen QW, Zhu XY, Li YY et al (2014) Epigenetic regulation and cancer (review). Oncol Rep 31:523–532. https://doi.org/10.3892/or.2013.2913

    Article  CAS  PubMed  Google Scholar 

  96. Ye XM, Zhu HY, Bai WD et al (2014) Epigenetic silencing of miR-375 induces trastuzumab resistance in HER2-positive breast cancer by targeting IGF1R. BMC Cancer 14:134. https://doi.org/10.1186/1471-2407-14-134

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Liu MX, Siu MK, Liu SS et al (2014) Epigenetic silencing of microRNA-199b-5p is associated with acquired chemoresistance via activation of JAG1-Notch1 signaling in ovarian cancer. Oncotarget 5:944–958. https://doi.org/10.18632/oncotarget.1458

    Article  PubMed  Google Scholar 

  98. Schliesser MG, Claus R, Hielscher T et al (2016) Prognostic relevance of miRNA-155 methylation in anaplastic glioma. Oncotarget 7:82028–82045. https://doi.org/10.18632/oncotarget.13452

    Article  PubMed  PubMed Central  Google Scholar 

  99. Zhou D, Wan Y, Xie D et al (2015) DNMT1 mediates chemosensitivity by reducing methylation of miRNA-20a promoter in glioma cells. Exp Mol Med 47:e182. https://doi.org/10.1038/emm.2015.57

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Hong L, Han Y, Zhang Y et al (2013) MicroRNA-21: a therapeutic target for reversing drug resistance in cancer. Expert Opin Ther Targets 17(9):1073–1080. https://doi.org/10.1517/14728222.2013.819853

    Article  CAS  PubMed  Google Scholar 

  101. Xie Z, Cao L, Zhang J (2013) miR-21 modulates paclitaxel sensitivity and hypoxia-inducible factor-1α expression in human ovarian cancer cells. Oncol Lett 6:795–800

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Jin B, Liu Y, Wang H (2015) Antagonism of miRNA-21 sensitizes human gastric cancer cells to paclitaxel. Cell Biochem Biophys 72(1):275–282. https://doi.org/10.1007/s12013-014-0450-2

    Article  CAS  PubMed  Google Scholar 

  103. Kopczynska E (2015) Role of microRNAs in the resistance of prostate cancer to docetaxel and paclitaxel. Contemp Oncol (Pozn) 19:423–427. https://doi.org/10.5114/wo.2015.56648

    Article  CAS  Google Scholar 

  104. De Mattos-Arruda L, Bottai G, Nuciforo P et al (2015) MicroRNA-21 links epithelial-to-mesenchymal transition and inflammatory signals to confer resistance to neoadjuvant trastuzumab and chemotherapy in HER2-positive breast cancer patients. Oncotarget 6(35):37269–37280. https://doi.org/10.18632/oncotarget.5495

    Article  PubMed  PubMed Central  Google Scholar 

  105. Nielsen BS, Balslev E, Poulsen TS et al (2014) miR-21 expression in cancer cells may not predict resistance to adjuvant trastuzumab in primary breast cancer. Front Oncol 4:207. https://doi.org/10.3389/fonc.2014.00207

    Article  PubMed  PubMed Central  Google Scholar 

  106. Corcoran C, Rani S, O’Driscoll L (2014) miR-34a is an intracellular and exosomal predictive biomarker for response to docetaxel with clinical relevance to prostate cancer progression. Prostate 74:1320–1334

    Article  CAS  PubMed  Google Scholar 

  107. Dwivedi S, Mustafi S, Mangala L et al (2016) Therapeutic evaluation of microRNA-15a and microRNA-16 in ovarian cancer. Oncotarget 7(12):15093–15104. https://doi.org/10.18632/oncotarget.7618

    Article  PubMed  Google Scholar 

  108. Xu Y, Huang J, Ma L et al (2016) MicroRNA-122 confers sorafenib resistance to hepatocellular carcinoma cells by targeting IGF-1R to regulate RAS/RAF/ERK signaling pathways. Cancer Lett 371(2):171–181. https://doi.org/10.1016/j.canlet.2015.11.034

    Article  CAS  PubMed  Google Scholar 

  109. Yu D, Lv M, Chen W et al (2015) Role of miR-155 in drug resistance of breast cancer. Tumour Biol 36(3):1395–1401. https://doi.org/10.1007/s13277-015-3263-z

    Article  CAS  PubMed  Google Scholar 

  110. Shibayama Y, Kondo T, Ohya H et al (2015) Upregulation of microRNA-126-5p is associated with drug resistance to cytarabine and poor prognosis in AML patients. Oncol Rep 33(5):2176–2182. https://doi.org/10.3892/or.2015.3839

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Zhang W, Zhou J, Zhu X et al (2017) MiR-126 reverses drug resistance to TRAIL through inhibiting the expression of c-FLIP in cervical cancer. Gene 627:420–427. https://doi.org/10.1016/j.gene.2017.06.055

    Article  CAS  PubMed  Google Scholar 

  112. Liu S, Tetzlaff M, Cui R et al (2012) miR-200c inhibits melanoma progression and drug resistance through down-regulation of BMI-1. Am J Pathol 181(5):1823–1835. https://doi.org/10.1016/j.ajpath.2012.07.009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Zhao J, Chu Z, Hu Y et al (2015) Targeting the miR-221-222/PUMA/BAK/BAX pathway abrogates dexamethasone resistance in multiple myeloma. Cancer Res 75(20):4384–4397. https://doi.org/10.1158/0008-5472.CAN-15-0457

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Beg M, Brenner A, Sachdev J et al (2017) Phase I study of MRX34, a liposomal miR-34a mimic, administered twice weekly in patients with advanced solid tumors. Invest New Drugs 35(2):180–188. https://doi.org/10.1007/s10637-016-0407-y

    Article  CAS  PubMed  Google Scholar 

  115. Li Z, Rana T (2014) Therapeutic targeting of microRNAs: current status and future challenges. Nat Rev Drug Discov 13(8):622–638. https://doi.org/10.1038/nrd4359

    Article  CAS  PubMed  Google Scholar 

  116. Kao S, Fulham M, Wong K et al (2015) A significant metabolic and radiological response after a novel targeted microRNA-based treatment approach in malignant pleural mesothelioma. Am J Respir Crit Care Med 191(12):1467–1469. https://doi.org/10.1164/rccm.201503-0461LE

    Article  PubMed  Google Scholar 

  117. Reid G, Kao S, Pavlakis N et al (2016) Clinical development of TargomiRs, a miRNA mimic-based treatment for patients with recurrent thoracic cancer. Epigenomics 8(8):1079–1085. https://doi.org/10.2217/epi-2016-0035

    Article  CAS  PubMed  Google Scholar 

  118. Rupaimoole R, Slack F (2017) MicroRNA therapeutics: towards a new era for the management of cancer and other diseases. Nat Rev Drug Discov 16(3):203–222. https://doi.org/10.1038/nrd.2016.246

    Article  CAS  PubMed  Google Scholar 

  119. Iorio MV, Croce CM (2012) microRNA involvement in human cancer. Carcinogenesis 33(6):1126–1133. https://doi.org/10.1093/carcin/bgs140

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. van Rooij E, Olson EN (2012) MicroRNA therapeutics for cardiovascular disease: opportunities and obstacles. Nat Rev Drug Discov 11:860–872. https://doi.org/10.1038/nrd3864

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Jackson AL, Linsley PS (2010) Recognizing and avoiding siRNA off-target effects for target identification and therapeutic application. Nat Rev Drug Discov 9:57–67. https://doi.org/10.1038/nrd3010

    Article  CAS  PubMed  Google Scholar 

  122. Grueter CE, van Rooij E, Johnson BA et al (2012) A cardiac microRNA governs systemic energy homeostasis by regulation of MED13. Cell 149:671–683. https://doi.org/10.1016/j.cell.2012.03.029

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Raemdonck K, Vandenbroucke RE, Demeester J et al (2008) Maintaining the silence: reflections on long-term RNAi. Drug Discov Today 13:917–931. https://doi.org/10.1016/j.drudis.2008.06.008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Kim DH, Rossi JJ (2007) Strategies for silencing human disease using RNA interference. Nat Rev Genet 8:173–184. https://doi.org/10.1038/nrg2006

    Article  CAS  PubMed  Google Scholar 

  125. Pecot CV, Calin GA, Coleman RL et al (2011) RNA interference in the clinic: challenges and future directions. Nat Rev Cancer 11:59–67. https://doi.org/10.1038/nrc2966

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank the grants below for support: National Natural Science Foundation of China (31502056), the Youth Talent Development Plan of Shanghai Municipal Agricultural System (20170116), and the Young Scientist Plan of Shanghai Academy of Agricultural Sciences (ZP173).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lihui Zhu.

Ethics declarations

Conflict of interest

No conflict of interest is in this paper.

Ethical approval

The review is not related to either human or animals use.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liao, R., Lin, Y. & Zhu, L. Molecular pathways involved in microRNA-mediated regulation of multidrug resistance. Mol Biol Rep 45, 2913–2923 (2018). https://doi.org/10.1007/s11033-018-4358-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-018-4358-6

Keywords

Navigation