Skip to main content
Log in

Cloning and characterization of SnRK2 subfamily II genes from Nicotiana tabacum

  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

SnRK2 is a plant-specific protein kinase family involved in abiotic stress signalling. In this study, NtSnRK2.1, NtSnRK2.2, and NtSnRK2.3, were cloned from tobacco by in silico cloning and reverse transcription PCR. The three protein kinases were classed into subfamily II of the SnRK2 family using a phylogenetic tree and C-terminus analysis. Subcellular localization revealed NtSnRK2s in the nuclear and cytoplasmic compartments. Dynamic expression of NtSnRK2s in tobacco plants that were exposed to drought, salt, or cold stressors were characterised using quantitative real-time PCR. It was revealed that the three genes showed similar patterns of transcription under abiotic stress responses; there was evidence NtSnRK2s participated in abscisic acid-dependent signalling pathways. NtSnRK2.13 responded much faster to drought and salt than to cold stress. To investigate the role of NtSnRK2s under abiotic stresses, NtSnRK2.1 gene was over-expressed in tobacco. A stress tolerance assay showed that tobacco plants that over-expressed NtSnRK2.1 plants had greater salt tolerance. The results indicate that NtSnRK2s are involved in abiotic stress response pathways.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Zhu JK (2002) Salt and drought stress signal transduction in plants. Annu Rev Plant Biol 53:247–273

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  2. Xiong L, Schumaker KS, Zhu JK (2002) Cell signaling during cold, drought, and salt stress. Plant Cell 14:165–183

    Article  Google Scholar 

  3. Cohen P (1988) Protein phosphorylation and hormone action. Proc R Soc Lond B Biol Sci 234:115–144

    Article  CAS  PubMed  Google Scholar 

  4. Hrabak EM, Chan CW, Gribskov M, Harper JF, Choi JH et al (2003) The Arabidopsis CDPK-SnRK superfamily of protein kinases. Plant Physiol 132:666–680

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  5. Halford NG, Hardie DG (1998) SNF1-related protein kinases: global regulators of carbon metabolism in plants? Plant Mol Biol 37:735–748

    Article  CAS  PubMed  Google Scholar 

  6. Hardie DG, Carling D, Carlson M (1998) The AMP-activated/SNF1 protein kinase subfamily: metabolic sensors of the eukaryotic cell? Annu Rev Biochem 67:821–855

    Article  CAS  PubMed  Google Scholar 

  7. Halford NG, Hey SJ (2009) Snf1-related protein kinases (SnRKs) act within an intricate network that links metabolic and stress signalling in plants. Biochem J 419:247–259

    Article  CAS  PubMed  Google Scholar 

  8. Huang JF, Teyton L, Harper JF (1996) Activation of a Ca(2+)-dependent protein kinase involves intramolecular binding of a calmodulin-like regulatory domain. Biochemistry 35:13222–13230

    Article  CAS  PubMed  Google Scholar 

  9. Vlad F, Rubio S, Rodrigues A, Sirichandra C, Belin C et al (2009) Protein phosphatases 2C regulate the activation of the Snf1-related kinase OST1 by abscisic acid in Arabidopsis. Plant Cell 21:3170–3184

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  10. Harmon AC, Yoo BC, McCaffery C (1994) Pseudosubstrate inhibition of CDPK, a protein kinase with a calmodulin-like domain. Biochemistry 33:7278–7287

    Article  CAS  PubMed  Google Scholar 

  11. Anderberg RJ, Walker-Simmons MK (1992) Isolation of a wheat cDNA clone for an abscisic acid-inducible transcript with homology to protein kinases. Proc Natl Acad Sci USA 89:10183

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  12. Gomez-Cadenas A, Verhey SD, Holappa LD, Shen Q, Ho TH et al (1999) An abscisic acid-induced protein kinase, PKABA1, mediates abscisic acid-suppressed gene expression in barley aleurone layers. Proc Natl Acad Sci USA 96:1767–1772

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  13. Gómez-Cadenas A, Zentella R, Walker-Simmons MK, Ho T-HD (2001) Gibberellin/abscisic acid antagonism in barley aleurone cells: site of action of the protein kinase PKABA1 in relation to gibberellin signaling molecules. Plant Cell 13:667–679

    Article  PubMed Central  PubMed  Google Scholar 

  14. Johnson RR, Wagner RL, Verhey SD, Walker-Simmons MK (2002) The abscisic acid-responsive kinase PKABA1 interacts with a seed-specific abscisic acid response element-binding factor, TaABF, and phosphorylates TaABF peptide sequences. Plant Physiol 130:837–846

    Article  PubMed Central  PubMed  Google Scholar 

  15. Zhang HY, Mao XG, Jing RL, Xie HM (2011) Characterization of a common wheat (Triticum aestivum L.) TaSnRK2.7 gene involved in abiotic stress responses. J Exp Bot 62:975–988

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  16. Zhang HY, Mao XG, Wang CS, Jing RL (2010) Overexpression of a common wheat gene TaSnRK2.8 enhances tolerance to drought, salt and low temperature in Arabidopsis. PLoS One 5:e16041

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  17. Mao XG, Zhang HY, Tian SJ, Chang XP, Jing RL (2010) TaSnRK2.4, an SNF1-type serine/threonine protein kinase of wheat (Triticum aestivum L.), confers enhanced multistress tolerance in Arabidopsis. J Exp Bot 61:683–696

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  18. Tian S, Mao X, Zhang H, Chen S, Zhai C et al (2013) Cloning and characterization of TaSnRK2. 3, a novel SnRK2 gene in common wheat. J Exp Bot 64:2063–2080

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  19. Boudsocq M, Barbier-Brygoo H, Lauriere C (2004) Identification of nine sucrose nonfermenting 1-related protein kinases 2 activated by hyperosmotic and saline stresses in Arabidopsis thaliana. J Biol Chem 279:41758–41766

    Article  CAS  PubMed  Google Scholar 

  20. Zheng ZF, Xu XP, Crosley RA, Greenwalt SA, Sun YJ et al (2010) The protein kinase SnRK2.6 mediates the regulation of sucrose metabolism and plant growth in Arabidopsis. Plant Physiol 153:99–113

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  21. Kobayashi Y, Yamamoto S, Minami H, Kagaya Y, Hattori T (2004) Differential activation of the rice sucrose nonfermenting1-related protein kinase2 family by hyperosmotic stress and abscisic acid. Plant Cell 16:1163–1177

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  22. Diedhiou CJ, Popova OV, Dietz KJ, Golldack D (2008) The SNF1-type serine-threonine protein kinase SAPK4 regulates stress-responsive gene expression in rice. BMC Plant Biol 8:49

    Article  PubMed Central  PubMed  Google Scholar 

  23. Huai J, Wang M, He J, Zheng J, Dong Z et al (2008) Cloning and characterization of the SnRK2 gene family from Zea mays. Plant Cell Rep 27:1861–1868

    Article  CAS  PubMed  Google Scholar 

  24. Kelner A, Pekala L, Kaczanowski S et al (2004) Biochemical characterization of the tobacco 42-KD protein kinase activated by osmotic stress. Plant Physiol 136:3255–3265

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  25. Wawer I, Bucholc M, Astier J, Anielska-Mazur A, Dahan J, Kulik A, Wyslouch-Cieszynska A, Zareba-Koziol M, Krzywinska E, Dadlez M (2010) Regulation of Nicotiana tabacum osmotic stress-activated protein kinase and its cellular partner GAPDH by nitric oxide in response to salinity. Biochem J 429:73–83

    Article  CAS  PubMed  Google Scholar 

  26. Livaka KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods 25:402–408

    Article  Google Scholar 

  27. Kim J, Shiu SH, Thoma S, Li WH, Patterson S (2006) Patterns of expansion and expression divergence in the plant polygalacturonase gene family. Genome Biol 7:R87

    Article  PubMed Central  PubMed  Google Scholar 

  28. Hanson MR, Köhler RH (2001) GFP imaging: methodology and application to investigate cellular compartmentation in plants. J Exp Bot 52:529–539

    Article  CAS  PubMed  Google Scholar 

  29. Xu MR, Huang LY, Zhang F, Zhu LH, Zhou YL, Li ZK (2013) Genome-wide phylogenetic analysis of stress-activated protein kinase genes in rice (OsSAPKs) and expression profiling in response to Xanthomonas oryzae pv. oryzicola infection. Plant Mol Biol Rep 31:877–885

    Article  CAS  Google Scholar 

  30. Sheard LB, Zheng N (2009) Plant biology: signal advance for abscisic acid. Nature 462:575–576

    Article  CAS  PubMed  Google Scholar 

  31. Park SY, Fung P, Nishimura N, Jensen DR, Fujii H et al (2009) Abscisic acid inhibits type 2C protein phosphatases via the PYR/PYL family of START proteins. Science 324:1068–1071

    PubMed Central  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the grants from State Tobacco Monopoly Administration of China (No. 110200902045) and the research program on the metabolism and molecular basis of strong-flavor characteristic high-quality tobacco formation (No. TS-01-2011004).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hong Cui.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 31 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, H., Jia, H., Liu, G. et al. Cloning and characterization of SnRK2 subfamily II genes from Nicotiana tabacum . Mol Biol Rep 41, 5701–5709 (2014). https://doi.org/10.1007/s11033-014-3440-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-014-3440-y

Keywords

Navigation