Skip to main content
Log in

Berberine regulates the expression of E-prostanoid receptors in diabetic rats with nephropathy

  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Diabetic nephropathy (DN) is a major cause of morbidity and mortality in diabetic patients. Effective therapies to prevent the development of this disease and to improve advanced kidney injury are required. Berberine (BBR) has preventive effects on diabetes and its complications. This study is to investigate the effects of BBR on the expression of E-prostanoid receptors (EPs) in rats with high-fat diet and streptozotocin (STZ)-induced DN and underlying molecular mechanisms of BBR on DN rats. DN model was induced in male Sprague–Dawley rats with high-fat diet and low dose of STZ injection. BBR (50, 100, 200 mg/kg/d) were orally administered to rats after STZ injection and conducted for 8 weeks. The levels of interleukin-6 (IL-6) and prostaglandin E2 (PGE2) in renal cortex were measured by enzyme-linked immunosorbent assay. Expression of EPs receptors (EP1–EP4) were determined by western blotting. Remarkable renal damage, hyperglycemia and hyperlipidemia were observed in DN rats. BBR could restore renal functional parameters, suppress alterations in histological and ultrastructural changes in the kidney tissues, improve glucose and lipid metabolism disorders, and increase cAMP levels compared with those of DN model group (Wang et al. in Mol Biol Rep 40:2405–2418, 2013). The level of IL-6 and PGE2 were significantly increased in DN model group compared with normal group, BBR could apparently reduced the level of IL-6 and PGE2. Furthermore, the expression of EP1 and EP3 were both increased and EP4 was lessened in the DN model group compared with normal group, BBR could down-regulate total protein expression of EP1 and EP3 of renal cortex in DN rats and up-regulate the expression of EP4, and there is no significant difference on the expression of EP2 among all groups. These studies demonstrate, for the first time, that BBR exerts renoprotection in high-fat diet and STZ-induced DN rats by modulating the proteins expression of EPs in EP–G protein–cAMP signaling pathway.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

BBR:

Berberine

EPs:

E-prostanoid receptors

DN:

Diabetic nephropathy

STZ:

Streptozotocin

PGE2 :

Prostaglandin E2

IL-6:

Interleukin-6

T2DM:

Type 2 diabetes mellitus

ECM:

Extracellular matrix

GBM:

Glomerular basement membrane

MCs:

Mesangial cells

AC:

Adenylate cyclase

FBG:

Fasting blood glucose

XKW:

Xiaoke Wan

References

  1. Wang FL, Tang LQ, Yang F et al (2013) Protective effects of berberine on renal function and its possible molecular mechanisms in combination of high-fat diet and low-dose streptozotocin-induced diabetic rats. Mol Biol Rep 40:2405–2418

    Article  CAS  PubMed  Google Scholar 

  2. Broumand B (2007) Diabetes: changing the fate of diabetics in the dialysis unit. Blood Purif 25:39–47

    Article  PubMed  Google Scholar 

  3. Jefferson JA, Shankland SJ, Pichler RH (2008) Proteinuria in diabetic kidney disease: a mechanistic viewpoint. Kidney Int 74:22–36

    Article  CAS  PubMed  Google Scholar 

  4. Srinivasan K, Viswanad B, Asrat L et al (2005) Combination of high-fat diet-fed and low-dose streptozotocin-treated rat: a model for type 2 diabetes and pharmacological screening. Pharmacol Res 52:313–320

    Article  CAS  PubMed  Google Scholar 

  5. Zhou J, Zhou S, Tang J et al (2009) Protective effect of berberine on beta cells in streptozotocin- and high-carbohydrate/high-fat diet-induced diabetic rats. Eur J Pharmacol 606:262–268

    Article  CAS  PubMed  Google Scholar 

  6. Breyer MD, Jacobson HR, Breyer RM (1996) Functional and molecular aspects of renal prostaglandin receptors. J Am Soc Nephrol 7:8–17

    CAS  PubMed  Google Scholar 

  7. Breyer MD, Breyer RM (2000) Prostaglandin E receptors and the kidney. Am J Physiol Ren Physiol 279:F12–F23

    CAS  Google Scholar 

  8. DeRubertis FR, Craven PA (1995) Eicosanoids in the pathogenesis of the functional and structural alterations of the kidney in diabetes. Am J Kidney Dis 22:727–735

    Article  Google Scholar 

  9. Barnett AH (2005) Preventing renal complications in diabetic patients: the diabetics exposed to telmisartan and enalapril (DETAIL) study. Acta Diabetol 42(Suppl 1):S42–S49

    Article  CAS  PubMed  Google Scholar 

  10. Hatae N, Sugimoto Y, Ichikawa A (2002) Prostaglandin receptors: advances in the study of EP3 receptor signaling. J Biochem 131(6):781–784

    Article  CAS  PubMed  Google Scholar 

  11. Boie Y, Stocco R, Sawyer N et al (1997) Molecular cloning and characterization of the four rat prostaglandin E2 prostanoid receptor subtypes. Eur J Pharmacol 340:227–241

    Article  CAS  PubMed  Google Scholar 

  12. Jensen BL, Mann B, Skott O et al (1999) Differential regulation of renal prostaglandin receptor mRNAs by dietary salt intake in the rat. Kidney Int 56:528–537

    Article  CAS  PubMed  Google Scholar 

  13. Morath R, Klein T, Seyberth HW, Nusing RM (1999) Immunolocalization of the four prostaglandin E2 receptor proteins EP1, EP2, EP3, and EP4 in human kidney. J Am Soc Nephrol 10:1851–1860

    CAS  PubMed  Google Scholar 

  14. Sugimoto Y, Namba T, Shigemoto R et al (1994) Distinct cellular localization of mRNAs for three subtypes of prostaglandin E receptor in kidney. Am J Physiol Ren Physiol 35:F823–F828

    Google Scholar 

  15. Yin J, Gao Z, Liu D et al (2008) Berberine improves glucose metabolism through induction of glycolysis. Am J Physiol Endocrinol Metab 294:E148–E156

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  16. Singh J, Kakkar P (2009) Antihyperglycemic and antioxidant effect of Berberis aristata root extract and its role in regulating carbohydrate metabolism in diabetic rats. J Ethnopharmacol 123:22–26

    Article  PubMed  Google Scholar 

  17. Brusq JM, Ancellin N, Grondin P (2006) Inhibition of lipid synthesis through activation of AMP kinase: an additional mechanism for the hypolipidemic effects of berberine. J Lipid Res 47:1281–1288

    Article  CAS  PubMed  Google Scholar 

  18. Yin J, Xing H, Ye J (2008) Efficacy of berberine in patients with type 2 diabetes mellitus. Metabolism 57:712–717

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  19. Wang Y, Champbell T, Perry B (2011) Hypoglycemic and insulin-sensitizing effects of berberine in high-fat diet- and streptozotocin-induced diabetic rats. Metabolism 60(2):298–305

    Article  CAS  PubMed  Google Scholar 

  20. Kang SW, Adler SG, Lapage J et al (2001) p38MAPK and MAPK kinase 3/6 mRNA and activities are increased in early diabetic glomeruli. Kidney Int 60:543–552

    Article  CAS  PubMed  Google Scholar 

  21. Marinova EK, Nikolova DB, Popova DN et al (2000) Suppression of experimental autoimmune tubulointerstitial nephritis in BALB/c mice by berberine. Immunopharmacology 48:9–16

    Article  CAS  PubMed  Google Scholar 

  22. Liu WH, Hei ZQ, Nie H et al (2008) Berberine ameliorates renal injury in streptozotocin-induced diabetic rats by suppression of both oxidative stress and aldose reductase. Chin Med J 121:706–712

    CAS  PubMed  Google Scholar 

  23. Tang LQ, Lv F, Liu S et al (2011) Effect of berberine on expression of transforming growth factor-β 1 and type IV collagen proteins in mesangial cells of diabetic rats with nephropathy. Chin J Chin Mater Med 36:3494–3497

    CAS  Google Scholar 

  24. Tang LQ, Wang FL, Zhu LN et al (2013) Berberine ameliorates renal injury by regulating G proteins–AC–cAMP signaling in diabetic rats with nephropathy. Mol Biol Rep 40(6):3913–3923

    Article  CAS  PubMed  Google Scholar 

  25. Liu S, Tang LQ, Chen LM (2004) Study on extraction technology of berberine from Rhizoma coptidis by the method of orthogonal-test optimization. China Pharm 15:18–20

    Google Scholar 

  26. Tesch GH, Allen TJ (2007) Rodent models of streptozotocin induced diabetic nephropathy. Nephrology (Carlton) 12:261–266

    Article  Google Scholar 

  27. Zhang JT (1998) Modern experimental methods in pharmacology. Beijing Medical University, Beijing, p 982

    Google Scholar 

  28. Molitch ME, DeFronzo RA, Franzetal MJ (2004) Nephropathy in diabetes. Diabetes Care 27(1):S79–S83

    PubMed  Google Scholar 

  29. Sahin K, Onderci M, Tuzcu M et al (2007) Effect of chromium on carbohydrate and lipid metabolism in a rat model of type 2 diabetes mellitus: the fat-fed, streptozotocin-treated rat. Metabolism 56:1233–1240

    Article  CAS  PubMed  Google Scholar 

  30. Yang F, Tang LQ, Wang FL et al (2011) Study of the influential factor on the establishment of experimental diabetic nephropathy in rats. Anhui Med Pharm J 16(6):735–738

    Google Scholar 

  31. Lee YS, Kim WS, Kim KH et al (2006) Berberine, a natural plant product, activates AMP-activated protein kinase with beneficial metabolic effects in diabetic and insulin-resistant states. Diabetes 55:2256–2264

    Article  CAS  PubMed  Google Scholar 

  32. Tang LQ, Wei W, Chen LM et al (2006) Effects of berberine on diabetes induced by alloxan and a high-fat/high-cholesterol diet in rats. J Ethnopharmacol 108:109–115

    Article  CAS  PubMed  Google Scholar 

  33. Tuttle KR (2005) Linking metabolism and immunology: diabetic nephropathy is an inflammatory disease. J Am Soc Nephrol 16:1537–1538

    Article  PubMed  Google Scholar 

  34. Mora C, Navarro JF (2006) Inflammation and diabetic nephropathy. Curr Diabetes Rep 6:463–468

    Article  CAS  Google Scholar 

  35. Hotamisligil GS (2006) Inflammation and metabolic disorders. Nature 444(7121):860–867

    Article  CAS  PubMed  Google Scholar 

  36. Galkina E, Ley K (2006) Leukocyte recruitment and vascular injury in diabetic nephropa-thy. J Am Soc Nephrol 17:368–377

    Article  CAS  PubMed  Google Scholar 

  37. Chow F, Ozols E, Nikolic-Paterson DJ et al (2004) Macrophages in mouse type 2 diabetic nephropathy: correlation with diabetic state and progressive renal injury. Kidney Int 65:116–128

    Article  CAS  PubMed  Google Scholar 

  38. Wong CK, Szeto CC, Chan MH et al (2005) Elevation of pro-inflammatory cytokines, C-reactive protein and cardiac troponin T in chronic renal failure patients on dialysis. Immunol Invest 36:47–57

    Article  Google Scholar 

  39. Navarro JF, Mora C, Gómez M et al (2008) Influence of renal involvement on peripheral blood mononuclear cell expression behaviour of tumour necrosis factor-α and interleukin-6 in type 2 diabetic patients. Nephrol Dial Transpl 23(3):919–926

    Article  CAS  Google Scholar 

  40. Fernandez-Real JM, Broch M, Vendrell J et al (2000) Interleukin-6 gene polymorphism and insulin sensitivity. Diabetes 49:517–520

    Article  CAS  PubMed  Google Scholar 

  41. Pickup JC, Chusney GD, Thomas SM et al (2000) Plasma interleukin-6, tumour necrosis factor a and blood cytokine production in type 2 diabetes. Life Sci 67(3):291–300

    Article  CAS  PubMed  Google Scholar 

  42. Kern PA, Ranganathan S, Li C et al (2001) Adipose tissue tumor necrosis factor and interleukin-6 expression in human obesity and insulin resistance. Am J Physiol Endocrinol Metab 280(5):E745–E751

    CAS  PubMed  Google Scholar 

  43. Lyngso D, Simonsen L, Bulow J (2002) Interleukin-6 pro-duction in human subcutaneous abdominal adipose tissue: the effect of exercise. J Physiol 543:373–378

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  44. Morcos M, Schlotterer A, Sayed AA (2008) Rosiglitazone reduces angiotensin II and advanced glycation end product-dependent sustained nuclear factor-kappa B activation in cultured human proximal tubular epithelial cells. Horm Metab Res 40(11):752–759

    Article  CAS  PubMed  Google Scholar 

  45. Breyer MD, Breyer RM (2008) Prostaglandin receptors: their role in regulating renal function. Curr Opin Nephrol Hypertens 9:23–29

    Article  Google Scholar 

  46. Ishibashi R, Tanaka I, Kotani M et al (1999) Roles of prostaglandin E receptors in mesangial cells under high-glucose conditions. Kidney Int 56:589–600

    Article  CAS  PubMed  Google Scholar 

  47. Breyer MD, Jacobson HR, Breyer RM (1996) Functional and molecular aspects of renal prostaglandin receptors. J Am Soc Nephrol 7:8–17

    CAS  PubMed  Google Scholar 

  48. Rutkai I, Feher A, Erdei N et al (2009) Activation of prostaglandin E2 EP1 receptor increases arteriolar tone and blood pressure in mice with type 2 diabetes. Cardiovasc Res 83(1):148–154

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  49. Purdy KE, Arendshorst WJ (2000) EP1 and EP4 receptors me diate prostaglandin E2 actions in the microcirculation of the rat kidney. Am J Physiol Ren Physiol 279:F755–F764

    CAS  Google Scholar 

  50. Kelly DJ, Zhang Y, Moe G et al (2007) Aliskiren, a novel renin inhibitor, is renoprotective in a model of advanced diabetic nephropathy in rats. Diabetologia 50:2398–2404

    Article  CAS  PubMed  Google Scholar 

  51. Vukicevic S, Simic P, Borovecki F et al (2008) Role of EP2 and EP4 receptor-selective agonists of prostaglandin E2 in acute and chronic kidney failure. Kidney Int 70:1099–1106

    Article  Google Scholar 

  52. Kennedy CR, Zhang Y, Brandon S, Guan Y, Coffee K et al (1999) Salt-sensitive hypertension and reduced fertility in mice lacking the prostaglandin EP2 receptor. Nat Med 5:217–220

    Article  CAS  PubMed  Google Scholar 

  53. Oliver JA (2009) Receptor-mediated actions of renin and prorenin. Kidney Int 69:13–15

    Article  Google Scholar 

  54. Nasrallah R, Xiong H, Hebert RL (2007) Renal prostaglandin E2 receptor (EP) expression profile is altered in streptozotocin and B6-Ins2 Akita type I-diabetic mice. Am J Physiol Ren Physiol 292:F278–F284

    Article  CAS  Google Scholar 

  55. Vukicevic S, Simic P, Borovecki F et al (2008) Role of EP2 and EP4 receptor-selective agonists of prostaglandin E2 in acute and chronic kidney failure. Kidney Int 70:1099–1106

    Article  Google Scholar 

  56. Makino H, Tanaka I, Mukoyama M et al (2002) Prevention of diabetic nephropathy in rats by prostaglandin E receptor EP1-selective antagonist. J Am Soc Nephrol 13:1757–1765

    Article  CAS  PubMed  Google Scholar 

  57. Faour WH, Gomi K, Kennedy CR (2008) PGE(2) induces COX-2 expression in podocytes via the EP(4) receptor through a PKA-independent mechanism. Cell Signal 20:2156–2164

    Article  CAS  PubMed  Google Scholar 

  58. Stitt-Cavanagh EM, Faour WH, Takami K et al (2010) A maladaptive role for EP4 receptors in podocytes. Am Soc Nephrol 21:1678–1690

    Article  CAS  Google Scholar 

  59. Makino H, Tanaka I, Mukoyama M et al (2007) Prevention of diabetic nephropathy in rats by prostaglandin E receptor EP1-selective antagonist. J Am Soc Nephrol 13:1757–1765

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the China National Science Foundation (No. 81073109 and No. 81102864) and Natural Science Foundation of Anhui Province (China, No. 090413106).

Conflict of interest

The authors have declared that no conflict of interest exists.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Li Qin Tang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tang, L.Q., Liu, S., Zhang, S.T. et al. Berberine regulates the expression of E-prostanoid receptors in diabetic rats with nephropathy. Mol Biol Rep 41, 3339–3347 (2014). https://doi.org/10.1007/s11033-014-3196-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-014-3196-4

Keywords

Navigation