Skip to main content
Log in

DNA repair genes polymorphism and lung cancer risk with the emphasis to sex differences

  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Polymorphisms in nucleotide and base excision repair genes are associated with the variability in the risk of developing lung cancer. In the present study, we investigated the polymorphisms of following selected DNA repair genes: XPC (Lys939Gln), XPD (Lys751Gln), hOGG1 (Ser326Cys) and XRCC1 (Arg399Gln), and the risks they present towards the development of lung cancer with the emphasis to gender differences within the Slovak population. We analyzed 761 individuals comprising 382 patients with diagnosed lung cancer and 379 healthy controls. Genotypes were determined by polymerase chain reaction/restriction fragment length polymorphism method. We found out statistically significant increased risk for lung cancer development between genders. Female carrying XPC Gln/Gln, XPC Lys/Gln+Gln/Gln and XRCC1 Arg/Gln, XRCC1 Arg/Gln+Gln/Gln genotypes had significantly increased risk of lung cancer corresponding to OR = 2.06; p = 0.04, OR = 1.66; p = 0.04 and OR = 1.62; p = 0.04, OR = 1.69; p = 0.02 respectively. In total, significantly increased risk of developing lung cancer was found in the following combinations of genotypes: XPD Lys/Gln+XPC Lys/Lys (OR = 1.62; p = 0.04), XRCC1 Gln/Gln+hOGG1 Ser/Ser (OR = 2.14; p = 0.02). After stratification for genders, the following combinations of genotype were found to be significant in male: XPD Lys/Gln+XPC Lys/Lys (OR = 1.87; p = 0.03), XRCC1 Arg/Gln+XPC Lys/Lys (OR = 4.52; p = 0.0007), XRCC1 Arg/Gln+XPC Lys/Gln (OR = 5.44; p < 0.0001). In female, different combinations of the following genotypes were found to be significant: XRCC1 Arg/Gln+hOGG1 Ser/Ser (OR = 1.98; p = 0.04), XRCC1 Gln/Gln+hOGG1 Ser/Ser (OR = 3.75; p = 0.02), XRCC1 Arg/Gln+XPC Lys/Gln (OR = 2.40; p = 0.04), XRCC1 Arg/Gln+XPC Gln/Gln (OR = 3.03; p = 0.04). We found out decreased cancer risk in genotype combinations between female patients and healthy controls: XPD Lys/Lys+XPC Lys/Gln (OR = 0.45; p = 0.02), XPD Lys/Gln+XPC Lys/Lys (OR = 0.32; p = 0.005), XPD Lys/Gln+XPC Lys/Gln (OR = 0.48; p = 0.02). Our results did not show any difference between pooled smokers and non-smokers in observed gene polymorphisms in the association to the lung cancer risk. However, gender stratification indicated the possible effect of heterozygous constitution of hOGG1 gene (Ser/Cys) on lung cancer risk in female non-smokers (OR = 0.20; p = 0.01) and heterozygous constitution of XPC gene (Lys/Gln) in male smokers (OR = 2.70; p = 0.01).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. GLOBCAN (2008) http://globocan.iarc.fr/factsheets/cancers/lung.asp (GLOBCAN 2008, IARC, Section of Cancer Information) Accessed 10 Oct 2011

  2. Yin M, Liao Z, Huang Y-J, Yuan X (2011) Polymorphisms of homologuos recombination genes and clinical outcomes of non-small cell lung cancer patients treated with definitive radiotherapy. PLoS ONE. doi:10.1371/journal.pone.0020055

    Google Scholar 

  3. Yin J, Vogel U, Ma Y, Qi R, Wang H (2009) Association of DNA repair gene XRCC1 and lung cancer susceptibility among non-smoking Chinese women. Cancer Genet Cytogenet 188:26–31

    Article  PubMed  CAS  Google Scholar 

  4. Jemal A, Siegel R, Ward E, Hao Y, Xu J, Thun MJ (2009) Cancer statistic. Cancer J Clin 59:225–249

    Article  Google Scholar 

  5. Molina JR, Yang P, Cassivi SD, Schild SE, Adjei AA (2008) Non-small cell lung cancer: epidemiology, risk factors, treatment, and survivorship. Mayo Clin Proc 83:584–594

    PubMed  Google Scholar 

  6. Parkin DM, Bray FI, Devesa SS (2001) Cancer burden in the year 2000. The global picture. Eur J Cancer 37(8):4–66

    Article  Google Scholar 

  7. Alberg AJ, Ford JG, Samet JM (2007) Epidemiology of lung cancer: ACCP evidence-based clinical practice guidelines (2nd edition). Chest 123:29–55

    Article  Google Scholar 

  8. Kiyohara C, Yoshimasu K, Shirakawa T, Hopkin JM (2004) Genetic polymorphisms and environmental risk of lung cancer: a review. Rev Environ Health 19:15–38

    Article  PubMed  CAS  Google Scholar 

  9. Kirsch-Volders M, Bonassi S, Herceg Z, Hirvonen A, Möller L, Phillips DH (2010) Gender-related differences in response to mutagens and carcinogens. Mutagenesis 25(3):213–221

    Article  PubMed  CAS  Google Scholar 

  10. Jin Y, Xu H, Zhang Ch, Kong Y, Hou Y, Xu Y, Xue S (2010) Combined effects of cigarette smoking, gene polymorphisms and methylations of tumor suppressor genes on non-small cell lung cancer: a hospital-based case-control study in China. BMC Cancer 10:422

    Article  PubMed  Google Scholar 

  11. Bray FJ, Weiderpass E (2010) Lung cancer mortality trends in 36 European countries: secular trends and birth cohort patterns by sex and region 1970–2007. Int J Cancer 126(6):1454–1466

    PubMed  CAS  Google Scholar 

  12. Blot WJ, Fraumeni JF Jr (1996) Cancer of the lung and pleura. In: Schottenfeld D, Fraumeni JF Jr (eds) Cancer epidemiology and prevention. Oxford University Press, New York, pp 637–665

    Google Scholar 

  13. Hecht SS (1999) Tobacco smoke carcinogens und lung cancer. J Natl Cancer Inst 91:1194–1210

    Article  PubMed  CAS  Google Scholar 

  14. Livneh Z (2001) DNA damage control by novel DNA polymerases: translesion replication and mutatgenesis. J Biol Chem 276:25639–25642

    Article  PubMed  CAS  Google Scholar 

  15. Kiyohara C, Ohno Y (2010) Sex differences in lung cancer susceptibility: a review. Gend Med 7(5):381–400

    Article  PubMed  Google Scholar 

  16. Begum S (2012) Molecular changes in smoking-related lung cancer. Expert Rev Mol Diagn 12(1):93–106

    Article  PubMed  CAS  Google Scholar 

  17. Zhang JV, Wang Y, Prakash C (2006) Xenobiotic-metabolizing enzymes in human lung. Curr Drug Metab 8:939–948

    Article  Google Scholar 

  18. Wood RD, Mitchell M, Sgouros J, Lindahl T (2001) Human DNA repair genes. Science 291:1284–1289

    Article  PubMed  CAS  Google Scholar 

  19. Dai H, Liu J, Malkas LH, Catalano J, Alagharu S, Hickey RJ (2009) Chromium reduces the in vitro activity and fidelity of DNA replication mediated by the human cell DNA synthesome. Toxicol Appl Pharmacol 236(2):154–165

    Article  PubMed  CAS  Google Scholar 

  20. Friedberg EC (2001) How nucleotide excision repair protects against cancer. Nat Rev Cancer 1:22–33

    Article  PubMed  CAS  Google Scholar 

  21. Hanawalt PC (2002) Subpathways of nucleotide excision repair and their regulation. Oncogene 21(58):8949–8956

    Article  PubMed  CAS  Google Scholar 

  22. Chen J, Suter B (2003) XPD a structural bridge and a functional link. Cell Cycle 2(6):503–506

    Article  PubMed  CAS  Google Scholar 

  23. Christmann M, Tomicic MT, Roos WP, Kaina B (2003) Mechanisms of human DNA repair: an update. Toxicology 193(1–2):3–34

    Article  PubMed  CAS  Google Scholar 

  24. Berwick M, Vineis P (2000) Markers of DNA repair and susceptibility to cancer in humans: an epidemiologic review. J Natl Cancer Inst 92(11):874–897

    Article  PubMed  CAS  Google Scholar 

  25. Zafereo ME, Sturgis EM, Liu Z, Wang LE, Wei Q, Li G (2009) Nucleotide excision repair core gene polymorphisms and risk of second primary malignancy in patients with index squamous cell carcinoma of the head and neck. Carcinogenesis 30:997–1002

    Article  PubMed  CAS  Google Scholar 

  26. Vidal AE, Boiteux S, Hickson ID, Radicella P (2001) XRCC1 coordinates the initial and late stages of DNA abasic site repair through protein–protein interactions. EMBO J 20:6530–6539

    Article  PubMed  CAS  Google Scholar 

  27. Hashiguchi K, Stuart JA, De Souza-Pinto NC, Bohr VA (2004) The C-terminal alphaO helix of human Ogg1 is essential for 8-oxoguanine DNA glycosylase activity: the mitochondrial beta-Ogg1 lacks this domain and does not have glycosylase activity. Nucleic Acids Res 32:5596–5608

    Article  PubMed  CAS  Google Scholar 

  28. Yamane A, Kohno T, Ito K, Sunaga N, Aoki K, Yoshimura K, Murakami H, Nojima Y, Yokota J (2004) Differential ability of polymorphic OGG1 proteins to suppress mutagenesis induced by 8-hydroxyguanine in human cell in vivo. Carcinogenesis 25:1689–1694

    Article  PubMed  CAS  Google Scholar 

  29. Hu YC, Ahrendt SA (2005) hOGG1 Ser326Cys polymorphism and G:C-to-T:A mutations: no evidence for a role in tobacco-related non small cell lung cancer. Int J Cancer 114(3):387–393

    Article  PubMed  CAS  Google Scholar 

  30. Kohno T, Kunitoh H, Toyama K, Yamamoto S, Kuchiba A, Saito D, Yanagitani N, Ishihara S, Saito R, Yokota J (2006) Association of the OGG1-Ser326Cys polymorphism with lung adenocarcinoma risk. Cancer Sci 97:724–728

    Article  PubMed  CAS  Google Scholar 

  31. Mambo E, Chatterjee A, De Souza-Pinto NC, Mayard S, Hogue BA, Hoque MO, Dizdaroglu M, Bohr VA, Sidransky D (2005) Oxidized guanine lesions and hOgg1 activity in lung cancer. Oncogene 24:4496–4508

    Article  PubMed  CAS  Google Scholar 

  32. Li D, Zhou Q, Liu Y, Yang Y, Li Q (2011) DNA repair gene polymorphism associated with sensitivity of lung cancer to therapy. Med Oncol. doi:10.1007/s12032-011-0033-7

    Google Scholar 

  33. Li Z, Guan W, Li MX, Zhong ZY, Qian CY, Yang XQ, Liao L, Zp Li, Wang D (2001) Genetic polymorphism of DNA base-excision repair genes (APE1, OGG1 and XRCC1) and their correlation with risk of lung cancer in a Chinese population. Arch Med Res 42:226–234

    Article  Google Scholar 

  34. Li Y, Huang XE, Jin GF, Shen HB, Xu L (2011) Lack of any relationship between chemotherapy toxicity in non-small cell lung cancer cases and polymorphisms in XRCC1 codon 399 or XPD codon 751. Asian Pac J Cancer Prev 12(7):39–42

    Google Scholar 

  35. Yin M, Liao Z, Liu Z, Wang LE, Gomez D, Komaki R, Wei Q (2011) Functional polymorphisms of base excision repair genes XRCC1 and APEX1 predict risk of radiation pneumonitis in patients with non-small cell lung cancer treated with definitive radiation therapy. Int J Radiat Oncol Biol Phys 81:67–73

    Article  Google Scholar 

  36. Qian B, Zhang H, Zhang L, Zhou X, Yu H, Chen K (2011) Association of genetic polymorphisms in DNA repair pathway genes with non-small cell lung cancer risk. Lung Cancer 73:138–146

    Article  PubMed  Google Scholar 

  37. Kim IS, Lee GW, Kim DC, Kim HG, Kim S, Oh SY, Kim SH, Kwon HC (2010) Polymorphisms and haplotypes in the XRCC1 gene and the risk of advanced non-small cell lung cancer. J Thorac Oncol 5:1912–1921

    Article  PubMed  Google Scholar 

  38. Vodicka P, Stetina R, Polakova V, Tulupova E, Naccarati A, Vodickova L, Kumar R, Hanova M, Pardini B, Slyskova J, Musak L, De Palma G, Soucek P, Hemminki K (2007) Association of DNA repair polymorphisms with DNA repair functional outcomes in healthy human subjects. Carcinogenesis 28(3):657–664

    Article  PubMed  CAS  Google Scholar 

  39. Kiyohara C, Takayama K, Nakanishi Y (2010) Lung cancer risk and genetic polymorphisms in DNA repair pathways: a meta-analysis. J Nucleic Acids. doi:10.4061/2010/701760

    PubMed  Google Scholar 

  40. De Andrade M, Li Y, Marks RS, Deschamps C, Scanlon PD, Olswold CL, Jiand R, Swensen SJ, Sun Z, Cunningham JM, Wampfler JA, Limper AH, DE Midthun, Yang P (2012) Genetic variant associated with the risk of chronic obstructive pulmonary disease with and without lung cancer. Cancer Prev Res. doi:10.1158/1940-6207.CAPR-11-0243

    Google Scholar 

  41. Lopez-Cinema MF, Gonzalez-Arriaga P, Garcia-Castro L, Pascual T, Marrón MG, Puente XS, Tardón A (2007) Polymorphisms in XPC, XPD, XRCC1, and XRCC3 DNA repair genes and lung cancer risk in Northern Spain. BCM Cancer 7:162–174

    Google Scholar 

  42. De Ruyck, Szaumkessel M, De Ri, Dehoorne A, Vral A, Claes A et al (2007) Polymorphisms in base-excision repair and nucleotide excision repair genes in relation to lung cancer risk. Mutat Res 631:101–110

    Article  PubMed  Google Scholar 

  43. Matullo G, Dunning AM, Guarrera S, Baynes C, Polidoro S, Garte S, Autrup H, Malaveille C, Peluso M, Airoldi L, Veglia F, Gomally E, Hoek G, Krzyzanowski M, Overvad K, Raaschou-Nielsen O, Clavel-Chapelon F, linseisen J, Boeing H, Trichopoulou A, Palli D, Krogh V, Tumino R, Panico S, Bueno-De-mesquita HB, Peeters PH, Lund E, Pera G, Martinez C, Dorronsoro M, Barricarte A, Tormo MJ, Quiros JR, Day NE, Key TJ, Saracci R, Kaaks R, Riboli E, Vineis P (2006) DNA repair polymorphisms and cancer risk in non-smoker in a cohort study. Carcinogenesis 27:997–1007

    Article  PubMed  CAS  Google Scholar 

  44. Zienolddiny S, Campa D, Lind H (2006) Polymorphisms of DNA repair genes and risk of non-small cell lung cancer. Carcinogenesis 27:560–567

    Article  PubMed  CAS  Google Scholar 

  45. Chang JS, Wrensch MR, Hansen MH, Sison JD, Aldrich MC, Quesenberry CP Jr, Seldin MF, Kelsey KT, Wiencke JK (2009) Base excision repair genes and risk of lung cancer among San Francisco Bay Area Latinos and African–Americans. Carcinogenesis 30:78–87

    Article  PubMed  CAS  Google Scholar 

  46. Dong J, Hu Z, Shu Y, Pan S, Chen W, Wang Y, Hu L, Jiang Y, Dai J, Ma H, Jing G, Shen H (2011) Potentially functional polymorphisms in DNA repair genes and non-small cell lung cancer survival: a pathway-based analysis. Mol Carcinog. doi:10.1002/mc.20819

    Google Scholar 

  47. Mandal RK, Gangwar R, Kapoor R, Mittal RD (2012) Polymorphisms in base-excision repair genes & prostate cancer risk in north Indian population. Indian J Med Res 135(1):64–71

    Article  PubMed  CAS  Google Scholar 

  48. Halasova E, Bukovska E, Kukura F, Cervenova T, Oravec P, Kereskeni J (2001) Do works concerning ferrochromium alloys mean risk for inhabitants living in their surrounding? A cytogenetic study. Biologia 56(6):679–683

    Google Scholar 

  49. Halasova E, Baska T, Kukura F, Mazurova D, Bukovska E, Dobrota D, Poliacek I, Halasa M (2005) Lung cancer in relation to occupational and environmental chromium exposure and smoking. Neoplasma 52(4):287–291

    PubMed  CAS  Google Scholar 

  50. Ricceri F, Matullo G, Vineis P (2011) Is there evidence of involvement of DNA repair polymorphisms in human cancer? Mutat Res. doi:10.1016/j.mrfmmm.2011.07.013

    Google Scholar 

  51. Huang J, Zhang J, Zhao Y, Liao B, Liu J, Li L, Liao M, Wang L (2011) The Arg194Trp polymorphism in the XRCC1 gene and cancer risk in Chinese Mainland population: a meta-analysis. Mol Biol Rep 38:4565–4573

    Article  PubMed  CAS  Google Scholar 

  52. Qian Q, Liu R, Lei Z, You J, Zhou Q, Zhang HT (2011) Meta analysis of association between Ser326Cys polymorphism of hOGG1 gene and risk of lung cancer. Zhongguo Fei Ai Za Zhi 14:205–210

    PubMed  CAS  Google Scholar 

  53. C Kiyohara, Yoshimasu K (2007) Genetic polymorphisms in the nucleotide excision repair pathway and lung cancer risk: a meta-analysis. Int J Med Sci 4:59–71

    Google Scholar 

  54. Yin M, Liao Z, Huang Y-J, Yuan X (2011) Polymorphisms of homologous recombination genes and clinical outcomes of non-small cell lung cancer patients treated with definitive radiotherapy. PLoS ONE. doi:10.1371/journal.pone.0020055

    Google Scholar 

  55. Vogel U, Overvard K, Wallin H, Tjonneland A, Nexo BA, Raaschou-Nielsen O (2005) Combinations of polymorphisms in XPD, XPC and XPA in relation to risk of lung cancer. Cancer Lett 222:67–74

    Article  PubMed  CAS  Google Scholar 

  56. Zheng H, Wang Z, Shi X, Wang Z (2009) XRCC1 polymorphisms and lung cancer risk in Chinese populations: a meta-analysis. Lung Cancer 65:268–273

    Google Scholar 

  57. Raaschou-Nielsen O, Sørensen M, Overvad K, Tjønneland A, Vogel U (2008) Polymorphisms in nucleotide excision repair genes, smoking and intake of fruit and vegetables in relation to lung cancer. Lung Cancer 59:171–179

    Article  PubMed  Google Scholar 

  58. Sørensen M, Lopéz AG, Andersen PK, Vogel U, Autrup H, Tjønneland A, Overvad K, Raaschou-Nielsen O (2009) Stratification for smoking in case-cohort studies of genetic polymorphisms and lung cancer. Lung Cancer 63:335–340

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the Ministry of Health of the Slovak Republic, Grant No. 2007/48-UK-13 and by Grant APVV–0412-11.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. Letkova.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Letkova, L., Matakova, T., Musak, L. et al. DNA repair genes polymorphism and lung cancer risk with the emphasis to sex differences. Mol Biol Rep 40, 5261–5273 (2013). https://doi.org/10.1007/s11033-013-2626-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-013-2626-z

Keywords

Navigation