Skip to main content
Log in

Three novel SNPs in the coding region of PPARγ gene and their associations with meat quality traits in cattle

  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

The peroxisome proliferator-activated receptor γ (PPARγ) is a nuclear hormone receptor that regulates adipogenesis and many other biological processes. In the present study, we carried out PCR–SSCP and DNA sequencing analyses to examine SNPs in coding region of the PPARγ gene. A total of 660 individuals from five Chinese cattle breeds were genotyped. We identified three SNPs and their associations with meat quality traits were analyzed in 108 Qinchuan cattle. Two missense mutations and one synonymous mutation were found: 200 A > G (genotypes AA, AB and BB) resulting in D7G change, the silent substitution 42895 C > T (genotypes JJ and JI) and 72472 G > T (genotypes CC, DC and DD) producing Q448H change, respectively. The frequencies of PPARγ-A allele were 0.86, 0.83, 0.80, 0.72 and 0.87 for Qinchuan, Nanyang, Jiaxian, Luxi and Xianan populations, respectively. The frequencies of PPARγ-J allele varied from 0.87 to 0.96 in the five populations. In the 72472 G > T locus, the frequencies of PPARγ-C allele were higher than PPARγ-D allele in the five populations, and ranged from 0.58 to 0.82. Least squares analysis revealed that in 42895 C > T locus, there was a significant effect on tenderness in 18-20 months Qinchuan cattle (P < 0.01), and in the 72472 G > T locus, animals with the genotype DC had lower mean values than these with genotype CC (P < 0.01) for back fat thickness in 18–20 months, and animals with the genotype DD had lower mean values than these with genotypes CC and DC (P < 0.01) for water holding capacity in 21–24 months (P < 0.01). The SNPs we have identified may contribute to establishing a more efficient selection program for improving of genetic characteristics in indigenous Chinese cattle

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Isseman I, Green S (1990) Activation of a member of the steroid hormone receptor superfamily by peroxisome proliferators. Nature 347:645–650

    Article  Google Scholar 

  2. Forman BM, Chen J, Evans RM (1997) Hypolipidemic drugs, polyunsaturated fatty acids, and eicosanoids are ligands for peroxisome proliferator-activated receptors alpha and delta. PNAS 94:4312–4317

    Article  CAS  PubMed  Google Scholar 

  3. Kliewer SA, Lenhard JM, Willson TM, Patel I, Morris DC, Lehmann JM (1995) A prostaglandin j (2) metabolite binds peroxisome proliferator-activated receptor-gamma and promotes adipocyte differentiation. Cell 83:813–819

    Article  CAS  PubMed  Google Scholar 

  4. Tontonoz P, Hu ED, Spiegelman BM (1994) Stimulation of adipogenesis in fibroblasts by PPAR-gamma-2, a lipid-activated transcription factor. Cell 79:1147–1156

    Article  CAS  PubMed  Google Scholar 

  5. Berger J, Moller DE (2002) The mechanisms of action of PPARs. Annu Rev Med 53:409–435

    Article  CAS  PubMed  Google Scholar 

  6. Spiegelman BM (1998) PPAR-gamma: adipogenic regulator and thiazolidinedione receptor. Diabetes 47:507–514

    Article  CAS  PubMed  Google Scholar 

  7. Walczak R, Tontonz P (2002) PPARadigms and PPARadoxe: expanding roles for PPARgamma in the control of lipid metabolism. J Lipid Res 43:177–186

    CAS  PubMed  Google Scholar 

  8. Schoonjans K, Starls B, Auwerx J (1996) The peroxisome proliferator activated receptors (PPARs) and their effects on lipid metabolism and adipocyte differentiation. Biochim Biophys Acta 1302:93–109

    CAS  PubMed  Google Scholar 

  9. Matsusue K, Peters JM, Gonzalez FJ (2004) PPARβ/δ potentiates PPARγ-stimulated adipocyte differentiation. FASEB J 18:1477–1479

    CAS  PubMed  Google Scholar 

  10. Evans RM, Barish GD, Wang YX (2004) PPARs and the complex journey to obesity. Nat Med 10:355–361

    Article  CAS  PubMed  Google Scholar 

  11. Escher P, Wahli W (2000) Peroxisome proliferator-activated receptors: insight into multiple cellular functions. Mutat Res 448:121–138

    CAS  PubMed  Google Scholar 

  12. Rosenson RS (2007) Effects of peroxisome proliferator-activated receptors on lipoprotein metabolism and glucose control in type 2 diabetes mellitus. Am J Cardio 199:96B–104B

    Article  Google Scholar 

  13. Choudhary V, Kumar P, Bhattacharya TK, Bhushan B, Sharma A, Shukla A (2007) DNA polymorphism of insulin-like growth factor-binding protein-3 gene and its association with birth weight and body weight in cattle. J Anim Breed Genet 124:29–34

    Article  CAS  PubMed  Google Scholar 

  14. Wang J, Shaner N, Mittal B, Zhou Q, Chen J, Sanger JM, Sanger JW (2005) Dynamics of Z-band based proteins in developing skeletal muscle cells. Cell Motil Cytoskeleton 61(1):34–48

    Article  CAS  PubMed  Google Scholar 

  15. Xu XW, Xing S, Du ZQ, Rothschild MF, Yerle M, Liu B (2008) Porcine TEF1 and RTEF1: molecular characterization and association analyses with growth traits. Comp Biochem Physiol B 150(4):447–453

    Article  PubMed  Google Scholar 

  16. Zhou G, Dudgeon C, Li M, Cao Y, Zhang L, Jin H (2010) Molecular cloning of the HGD gene and association of SNPs with meat quality traits in Chinese red cattle. Mol Biol Rep 37(1):603–611

    Article  CAS  PubMed  Google Scholar 

  17. Liu H, Tian W, Zan L, Wang H, Cui H (2010) Mutations of MC4R gene and its association with economic traits in Qinchuan cattle. Mol Biol Rep 37(1):535–540

    Article  CAS  PubMed  Google Scholar 

  18. Zhang CL, Wang YH, Chen H, Lan XY, Lei CZ, Fang XT (2009) Association between variants in the 5′-untranslated region of the bovine MC4R gene and two growth traits in Nanyang cattle. Mol Biol Rep 36(7):1839–1843

    Article  CAS  PubMed  Google Scholar 

  19. Juszczuk-Kubiak E, Wyszyńska-Koko J, Wicińska K, Rosochacki S (2008) A novel polymorphisms in intron 12 of the bovine calpastatin gene. Mol Biol Rep 35(1):29–35

    Article  CAS  PubMed  Google Scholar 

  20. Sambrook J, Russell DW (2002) Molecular cloning A laboratory manual, 3rd edition. Science Press, Beijing, China (translated by Huang Pei Tang)

  21. Sun HS, Anderson LL, Yu TP, Kim KS, Klindt J, Tuggle CK (2002) Neonatal Meishan pigs show POU1F1 genotype effects on plasma GH and PRL concentration. Anim Reprod Sci 69:223–237

    Article  CAS  PubMed  Google Scholar 

  22. Meirhaeghe A, Fajas L, Helbecque N, Cottel D, Auwerx J, Deeb SS, Amouyel P (2000) Impact of the peroxisome proliferator activated receptor gamma2 Pro12Ala polymorphism on adiposity, lipids and non-insulin-dependent diabetes mellitus. Int J Obes Relat Metab Disord 24:195–199

    Article  CAS  PubMed  Google Scholar 

  23. Argmann CA, Cock TA, Auwerx J (2005) Peroxisome proliferator-activated receptor gamma: the more the merrier? Eur J Clin Invest 35:82–92

    Article  CAS  PubMed  Google Scholar 

  24. Auwerx J (1999) PPARgamma, the ultimate thrifty gene. Diabetologia 42:1033–1049

    Article  CAS  PubMed  Google Scholar 

  25. Yen CJ, Beamer BA, Negri C, Silver K, Brown KA, Yarnall DP, Burns DK, Roth J, Shuldiner AR (1997) Molecular scanning of the human peroxisome proliferator activated receptor-γ (PPAR) gene in diabetic Caucasians: identification of a Pro12Ala PPAR-γ2 missense mutation. Biophys Res Commun 241:270–274

    Article  CAS  Google Scholar 

  26. Ristow M, Muller-Wieland D, Pfeiffer A, Krone W, Kahn CR (1998) Obesity associated with a mutation in a genetic regulator of adipocyte differentiation. N Engl J Med 339(14):953–959

    Article  CAS  PubMed  Google Scholar 

  27. Orio F Jr, Matarese G, Di Biase S, Palomba S, Labella D, Sanna V, Savastano S, Zullo F, Colao A, Lombardi G (2003) Exon 6 and 2 peroxisome proliferators-activated receptor-gamma polymer- phism in polycystic ovary syndrome. J Clin Endocrinol Metab 88(12):5–887

    Article  Google Scholar 

  28. Peng DQ, Zhao SP, Nie S, Li J (2003) Gene-gene interaction of PPARg and ApoE affects coronary heart disease risk. Int J Cardiol 92:257–263

    Article  PubMed  Google Scholar 

  29. Tahara T, Arisawa T, Shibata T, Nakamura M, Wang F, Maruyama N, Kamiya Y, Nakamura M, Fujita H, Nagasaka M, Iwata M, Takahama K, Watanabe M, Hirata I, Nakano H, Nakamura M, Wang F, Maruyama N, Kamiya Y, Nakamur M, Fujita H, Nagasaka M, Iwata M, Takahama K, Watanabe M, Hirata I, Nakano H (2008) Influence of peroxisome proliferator-activated receptor (PPAR) gamma Plo12Ala polymorphism as a shared risk marker for both gastric cancer and impaired fasting glucose (IFG) in Japanese. Dig Dis Sci 53(3):614–621

    Article  CAS  PubMed  Google Scholar 

  30. Stumvoll M, Haring H (2002) The peroxisome proliferator-activated receptor-gamma2 Pro12Ala polymorphism. Diabetes 51:2341–2347

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was funded by the National “863” Program of China (No. 2006AA10Z1A1), the National Eleventh “Five year” Scientific and Technology Support Project (No.2006BAD01A10-3),the “13115” Scientific and Technological Innovation Program of Shaanxi Province (No. 2007ZDCY-01) and Talent Foundation for Northwest A&F University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lin Sen Zan.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 56 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fan, Y.Y., Zan, L.S., Fu, C.Z. et al. Three novel SNPs in the coding region of PPARγ gene and their associations with meat quality traits in cattle. Mol Biol Rep 38, 131–137 (2011). https://doi.org/10.1007/s11033-010-0086-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-010-0086-2

Keywords

Navigation