Skip to main content
Log in

Suppression of aggrecanase: a novel protective mechanism of dehydroepiandrosterone in osteoarthritis?

  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Aggrecanase-mediated aggrecan degradation is a significant event in the early stages of osteoarthritis (OA). There has been much interest in the possible role of these aggrecanases, mainly aggrecanase-1 (ADAMTS4) and aggrecanase-2 (ADAMTS5), as therapeutic targets in OA. The deficiency of current pharmaceutical treatments is that they mainly target the symptoms of OA but do not address the fundamental mechanism behind OA which is the destruction of articular cartilage. Therefore, a treatment which would protect or regenerate cartilage on the cellular level would be desirable. Dehydroepiandrosterone (DHEA), classified as an adrenal androgen, is recently proposed to be “disease-modifying”, and has been found to counteract proinflammatory effects of catabolic cytokines, suggesting that it has a protective effect for osteoarthritic cartilage. The suppression by DHEA of some members of the MMP family in OA has been well demonstrated, however, the effect of DHEA on aggrecanases remains unknown. This article reviews recent findings with regard to aggrecanases as critical catabolic enzymes and DHEA as a therapeutic agent in OA, and further discusses the possible relationship between aggrecanase and DHEA in the progression of OA.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Pincus T, Koch GG, Sokka T, Lefkowith J, Wolfe F, Jordan JM, Luta G, Callahan LF, Wang X, Schwartz T, Abramson SB, Caldwell JR, Harrell RA, Kremer JM, Lautzenheiser RL, Markenson JA, Schnitzer TJ, Weaver A, Cummins P, Wilson A, Morant S, Fort J (2001) A randomized, double-blind, crossover clinical trial of diclofenac plus misoprostol versus acetaminophen in patients with osteoarthritis of the hip or knee. Arthritis Rheum 44:1587–1598. doi:10.1002/1529-0131(200107)44:7<1587::AID-ART282>3.0.CO;2-X

    Article  CAS  PubMed  Google Scholar 

  2. Ravaud P, Moulinier L, Giraudeau B, Ayral X, Guerin C, Noel E, Thomas P, Fautrel B, Mazieres B, Dougados M (1999) Effects of joint lavage and steroid injection in patients with osteoarthritis of the knee: results of a multicenter, randomized, controlled trial. Arthritis Rheum 42:475–482. doi:10.1002/1529-0131(199904)42:3<475::AID-ANR12>3.0.CO;2-S

    Article  CAS  PubMed  Google Scholar 

  3. Martel-Pelletier J, Boileau C, Pelletier JP, Roughley PJ (2008) Cartilage in normal and osteoarthritis conditions. Best Pract Res Clin Rheumatol 22:351–384. doi:10.1016/j.berh.2008.02.001

    Article  CAS  PubMed  Google Scholar 

  4. Arner EC (2002) Aggrecanase-mediated cartilage degradation. Curr Opin Pharmacol 2:322–329. doi:10.1016/S1471-4892(02)00148-0

    Article  CAS  PubMed  Google Scholar 

  5. Orentreich N, Brind JL, Rizer RL, Vogelman JH (1984) Age changes and sex differences in serum dehydroepiandrosterone sulfate concentrations throughout adulthood. J Clin Endocrinol Metab 59:551–555

    Article  CAS  PubMed  Google Scholar 

  6. Bélanger A, Candas B, Dupont A, Cusan L, Diamond P, Gomez JL, Labrie F (1994) Changes in serum concentrations of conjugated and unconjugated steroids in 40- to 80-year-old men. J Clin Endocrinol Metab 79:1086–1090. doi:10.1210/jc.79.4.1086

    Article  PubMed  Google Scholar 

  7. Jo H, Park JS, Kim EM, Jung MY, Lee SH, Seong SC, Park SC, Kim HJ, Lee MC (2003) The in vitro effects of dehydroepiandrosterone on human osteoarthritic chondrocytes. Osteoarthr Cartil 11:585–594. doi:10.1016/S1063-4584(03)00094-3

    Article  CAS  PubMed  Google Scholar 

  8. Jo H, Ahn HJ, Kim EM, Kim HJ, Seong SC, Lee I, Lee MC (2004) Effects of dehydroepiandrosterone on articular cartilage during the development of osteoarthritis. Arthritis Rheum 50:2531–2538. doi:10.1002/art.20368

    Article  CAS  PubMed  Google Scholar 

  9. Wu LD, Yu HC, Xiong Y, Feng J (2006) Effect of dehydroepiandrosterone on cartilage and synovium of knee joints with osteoarthritis in rabbits. Rheumatol Int 27:79–85. doi:10.1007/s00296-006-0238-9

    Article  CAS  PubMed  Google Scholar 

  10. Sandy JD (2006) A contentious issue finds some clarity: on the independent and complementary roles of aggrecanase activity and MMP activity in human joint aggrecanolysis. Osteoarthr Cartil 14:95–100. doi:10.1016/j.joca.2005.09.004

    Article  CAS  PubMed  Google Scholar 

  11. Bondeson J, Wainwright S, Hughes C, Caterson B (2008) The regulation of the ADAMTS4 and ADAMTS5 aggrecanases in osteoarthritis: a review. Clin Exp Rheumatol 26:139–145

    CAS  PubMed  Google Scholar 

  12. Flannery CR, Lark MW, Sandy JD (1992) Identification of a stromelysin cleavage site within the interglobular domain of human aggrecan. Evidence for proteolysis at this site in vivo in human articular cartilage. J Biol Chem 267:1008–1014

    CAS  PubMed  Google Scholar 

  13. Fosang AJ, Neame PJ, Last K, Hardingham TE, Murphy G, Hamilton JA (1992) The interglobular domain of cartilage aggrecan is cleaved by PUMP, gelatinases, and cathepsin B. J Biol Chem 267:19470–19474

    CAS  PubMed  Google Scholar 

  14. Fosang AJ, Last K, Knäuper V, Neame PJ, Murphy G, Hardingham TE, Tschesche H, Hamilton JA (1993) Fibroblast and neutrophil collagenases cleave at two sites in the cartilage aggrecan interglobular domain. Biochem J 295:273–276

    CAS  PubMed  Google Scholar 

  15. Fosang AJ, Last K, Knäuper V, Murphy G, Neame PJ (1996) Degradation of cartilage aggrecan by collagenase-3 (MMP-13). FEBS Lett 380:17–20. doi:10.1016/0014-5793(95)01539-6

    Article  CAS  PubMed  Google Scholar 

  16. Büttner FH, Hughes CE, Margerie D, Lichte A, Tschesche H, Caterson B, Bartnik E (1998) Membrane type 1 matrix metalloproteinase (MT1-MMP) cleaves the recombinant aggrecan substrate rAgg1mut at the ‘aggrecanase’ and the MMP sites. Characterization of MT1-MMP catabolic activities on the interglobular domain of aggrecan. Biochem J 333:159–165

    PubMed  Google Scholar 

  17. Sandy JD, Neame PJ, Boynton RE, Flannery CR (1991) Catabolism of aggrecan in cartilage explants. Identification of a major cleavage site within the interglobular domain. J Biol Chem 266:8683–8685

    CAS  PubMed  Google Scholar 

  18. Ilic MZ, Handley CJ, Robinson HC, Mok MT (1992) Mechanism of catabolism of aggrecan by articular cartilage. Arch Biochem Biophys 294:115–122. doi:10.1016/0003-9861(92)90144-L

    Article  CAS  PubMed  Google Scholar 

  19. Loulakis P, Shrikhande A, Davis G, Maniglia CA (1992) N-terminal sequence of proteoglycan fragments isolated from medium of interleukin-1-treated articular-cartilage cultures. Putative site(s) of enzymic cleavage. Biochem J 284:589–593

    CAS  PubMed  Google Scholar 

  20. Tortorella MD, Malfait AM (2008) Will the real aggrecanase(s) step up: evaluating the criteria that define aggrecanase activity in osteoarthritis. Curr Pharm Biotechnol 9:16–23. doi:10.2174/138920108783497622

    Article  CAS  PubMed  Google Scholar 

  21. Tortorella MD, Burn TC, Pratta MA, Abbaszade I, Hollis JM, Liu R, Rosenfeld SA, Copeland RA, Decicco CP, Wynn R, Rockwell A, Yang F, Duke JL, Solomon K, George H, Bruckner R, Nagase H, Itoh Y, Ellis DM, Ross H, Wiswall BH, Murphy K, Hillman MC Jr, Hollis GF, Newton RC, Magolda RL, Trzaskos JM, Arner EC (1999) Purification and cloning of aggrecanase-1: a member of the ADAMTS family of proteins. Science 284:1664–1666. doi:10.1126/science.284.5420.1664

    Article  CAS  PubMed  Google Scholar 

  22. Collins-Racie LA, Flannery CR, Zeng W, Corcoran C, Annis-Freeman B, Agostino MJ, Arai M, DiBlasio-Smith E, Dorner AJ, Georgiadis KE, Jin M, Tan XY, Morris EA, LaVallie ER (2004) ADAMTS-8 exhibits aggrecanase activity and is expressed in human articular cartilage. Matrix Biol 23:219–230. doi:10.1016/j.matbio.2004.05.004

    Article  CAS  PubMed  Google Scholar 

  23. Patel KP, Sandy JD, Akeda K, Miyamoto K, Chujo T, An HS, Masuda K (2007) Aggrecanases and aggrecanase-generated fragments in the human intervertebral disc at early and advanced stages of disc degeneration. Spine 32:2596–2603. doi:10.1097/BRS.0b013e3180dc9c36

    Article  PubMed  Google Scholar 

  24. Zeng W, Corcoran C, Collins-Racie LA, Lavallie ER, Morris EA, Flannery CR (2006) Glycosaminoglycan-binding properties and aggrecanase activities of truncated ADAMTSs: comparative analyses with ADAMTS-5, -9, -16 and -18. Biochim Biophys Acta 1760:517–524

    CAS  PubMed  Google Scholar 

  25. Fushimi K, Troeberg L, Nakamura H, Lim NH, Nagase H (2008) Functional differences of the catalytic and non-catalytic domains in human ADAMTS-4 and ADAMTS-5 in aggrecanolytic activity. J Biol Chem 283:6706–6716. doi:10.1074/jbc.M708647200

    Article  CAS  PubMed  Google Scholar 

  26. Malfait AM, Liu RQ, Ijiri K, Komiya S, Tortorella MD (2002) Inhibition of ADAM-TS4 and ADAM-TS5 prevents aggrecan degradation in osteoarthritic cartilage. J Biol Chem 277:22201–22208. doi:10.1074/jbc.M200431200

    Article  CAS  PubMed  Google Scholar 

  27. Glasson SS, Askew R, Sheppard B, Carito B, Blanchet T, Ma HL, Flannery CR, Peluso D, Kanki K, Yang Z, Majumdar MK, Morris EA (2005) Deletion of active ADAMTS5 prevents cartilage degradation in a murine model of osteoarthritis. Nature 434:644–648. doi:10.1038/nature03369

    Article  CAS  PubMed  Google Scholar 

  28. Stanton H, Rogerson FM, East CJ, Golub SB, Lawlor KE, Meeker CT, Little CB, Last K, Farmer PJ, Campbell IK, Fourie AM, Fosang AJ (2005) ADAMTS5 is the major aggrecanase in mouse cartilage in vivo and in vitro. Nature 434:648–652. doi:10.1038/nature03417

    Article  CAS  PubMed  Google Scholar 

  29. Little CB, Meeker CT, Golub SB, Lawlor KE, Farmer PJ, Smith SM, Fosang AJ (2007) Blocking aggrecanase cleavage in the aggrecan interglobular domain abrogates cartilage erosion and promotes cartilage repair. J Clin Invest 117:1627–1636. doi:10.1172/JCI30765

    Article  CAS  PubMed  Google Scholar 

  30. Majumdar MK, Askew R, Schelling S, Stedman N, Blanchet T, Hopkins B, Morris EA, Glasson SS (2007) Double-knockout of ADAMTS-4 and ADAMTS-5 in mice results in physiologically normal animals and prevents the progression of osteoarthritis. Arthritis Rheum 56:3670–3674. doi:10.1002/art.23027

    Article  CAS  PubMed  Google Scholar 

  31. Song RH, Tortorella MD, Malfait AM, Alston JT, Yang Z, Arner EC, Griggs DW (2007) Aggrecan degradation in human articular cartilage explants is mediated by both ADAMTS-4 and ADAMTS-5. Arthritis Rheum 56:575–585. doi:10.1002/art.22334

    Article  CAS  PubMed  Google Scholar 

  32. Michos ED, Vaidya D, Gapstur SM, Schreiner PJ, Golden SH, Wong ND, Criqui MH, Ouyang P (2008) Sex hormones, sex hormone binding globulin, and abdominal aortic calcification in women and men in the multi-ethnic study of atherosclerosis (MESA). Atherosclerosis 200:432–438. doi:10.1016/j.atherosclerosis.2007.12.032

    Article  CAS  PubMed  Google Scholar 

  33. Arnold JT, Gray NE, Jacobowitz K, Viswanathan L, Cheung PW, McFann KK, Le H, Blackman MR (2008) Human prostate stromal cells stimulate increased PSA production in DHEA-treated prostate cancer epithelial cells. J Steroid Biochem Mol Biol 111:240–246. doi:10.1016/j.jsbmb.2008.06.008

    Article  CAS  PubMed  Google Scholar 

  34. Kanazawa I, Yamaguchi T, Yamamoto M, Yamauchi M, Kurioka S, Yano S, Sugimoto T (2008) Serum DHEA-S level is associated with the presence of atherosclerosis in postmenopausal women with type 2 diabetes mellitus. Endocr J 55:667–675. doi:10.1507/endocrj.K07E-130

    Article  CAS  PubMed  Google Scholar 

  35. Enomoto M, Adachi H, Fukami A, Furuki K, Satoh A, Otsuka M, Kumagae S, Nanjo Y, Shigetoh Y, Imaizumi T (2008) Serum dehydroepiandrosterone sulfate levels predict longevity in men: 27-year follow-up study in a community-based cohort (Tanushimaru study). J Am Geriatr Soc 56:994–998. doi:10.1111/j.1532-5415.2008.01692.x

    Article  PubMed  Google Scholar 

  36. Weitoft T, Larsson A, Rönnblom L (2008) Serum levels of sex steroid hormones and matrix metalloproteinases after intra-articular glucocorticoid treatment in female patients with rheumatoid arthritis. Ann Rheum Dis 67:422–424. doi:10.1136/ard.2007.081315

    Article  CAS  PubMed  Google Scholar 

  37. Williams PJ, Jones RH, Rademacher TW (1997) Reduction in the incidence and severity of collagen-induced arthritis in DBA/1 mice, using exogenous dehydroepiandrosterone. Arthritis Rheum 40:907–911. doi:10.1002/art.1780400519

    Article  CAS  PubMed  Google Scholar 

  38. Struglics A, Larsson S, Pratta MA, Kumar S, Lark MW, Lohmander LS (2006) Human osteoarthritis synovial fluid and joint cartilage contain both aggrecanase and matrix metalloproteinase-generated aggrecan fragments. Osteoarthr Cartil 14:101–113. doi:10.1016/j.joca.2005.07.018

    Article  CAS  PubMed  Google Scholar 

  39. Maehara H, Suzuki K, Sasaki T, Oshita H, Wada E, Inoue T, Shimizu K (2007) G1-G2 aggrecan product that can be generated by M-calpain on truncation at Ala709-Ala710 is present abundantly in human articular cartilage. J Biochem 141:469–477. doi:10.1093/jb/mvm052

    Article  CAS  PubMed  Google Scholar 

  40. Straub RH, Konecna L, Hrach S, Rothe G, Kreutz M, Schölmerich J, Falk W, Lang B (1998) Serum dehydroepiandrosterone (DHEA) and DHEA sulfate are negatively correlated with serum interleukin-6 (IL-6), and DHEA inhibits IL-6 secretion from mononuclear cells in man in vitro: possible link between endocrinosenescence and immunosenescence. J Clin Endocrinol Metab 83:2012–2017. doi:10.1210/jc.83.6.2012

    Article  CAS  PubMed  Google Scholar 

  41. Ramírez JA, Bruttomesso AC, Michelini FM, Acebedo SL, Alché LE, Galagovsky LR (2007) Syntheses of immunomodulating androstanes and stigmastanes: comparison of their TNF-alpha inhibitory activity. Bioorg Med Chem 15:7538–7544. doi:10.1016/j.bmc.2007.09.012

    Article  PubMed  Google Scholar 

  42. Little CB, Hughes CE, Curtis CL, Jones SA, Caterson B, Flannery CR (2002) Cyclosporin A inhibition of aggrecanase-mediated proteoglycan catabolism in articular cartilage. Arthritis Rheum 46:124–129. doi:10.1002/1529-0131(200201)46:1<124::AID-ART10121>3.0.CO;2-X

    Article  CAS  PubMed  Google Scholar 

  43. Koshy PJ, Lundy CJ, Rowan AD, Porter S, Edwards DR, Hogan A, Clark IM, Cawston TE (2002) The modulation of matrix metalloproteinase and ADAM gene expression in human chondrocytes by interleukin-1 and oncostatin M: a time-course study using real-time quantitative reverse transcription-polymerase chain reaction. Arthritis Rheum 46:961–967. doi:10.1002/art.10212

    Article  CAS  PubMed  Google Scholar 

  44. Bondeson J, Wainwright SD, Lauder S, Amos N, Hughes CE (2006) The role of synovial macrophages and macrophage-produced cytokines in driving aggrecanases, matrix metalloproteinases, and other destructive and inflammatory responses in osteoarthritis. Arthritis Res Ther 8:R187. doi:10.1186/ar2099

    Article  PubMed  Google Scholar 

  45. Zwerina J, Redlich K, Polzer K, Joosten L, Krönke G, Distler J, Hess A, Pundt N, Pap T, Hoffmann O, Gasser J, Scheinecker C, Smolen JS, van den Berg W, Schett G (2007) TNF-induced structural joint damage is mediated by IL-1. Proc Natl Acad Sci USA 104:11742–11747. doi:10.1073/pnas.0610812104

    Article  CAS  PubMed  Google Scholar 

  46. Fosang AJ, Rogerson FM, East CJ, Stanton H (2008) ADAMTS-5: the story so far. Eur Cell Mater 15:11–26

    CAS  PubMed  Google Scholar 

  47. Durigova M, Soucy P, Fushimi K, Nagase H, Mort JS, Roughley PJ (2008) Characterization of an ADAMTS-5-mediated cleavage site in aggrecan in OSM-stimulated bovine cartilage. Osteoarthr Cartil 16:1245–1252. doi:10.1016/j.joca.2008.02.013

    Article  CAS  PubMed  Google Scholar 

  48. Burrage PS, Brinckerhoff CE (2007) Molecular targets in osteoarthritis: metalloproteinases and their inhibitors. Curr Drug Targets 8:293–303. doi:10.2174/138945007779940098

    Article  CAS  PubMed  Google Scholar 

  49. Thomas M, Sabatini M, Bensaude F, Mignard B, Ortuno JC, Caron I, Boutin JA, Ferry G (2006) A microplate assay for the screening of ADAMTS-4 inhibitors. Matrix Biol 25:261–267. doi:10.1016/j.matbio.2005.12.003

    Article  CAS  PubMed  Google Scholar 

  50. Gilbert AM, Bursavich MG, Lombardi S, Georgiadis KE, Reifenberg E, Flannery CR, Morris EA (2007) 5-((1H-Pyrazol-4-yl)methylene)-2-thioxothiazolidin-4-one inhibitors of ADAMTS-5. Bioorg Med Chem Lett 17:1189–1192. doi:10.1016/j.bmcl.2006.12.020

    Article  CAS  PubMed  Google Scholar 

  51. Wittwer AJ, Hills RL, Keith RH, Munie GE, Arner EC, Anglin CP, Malfait AM, Tortorella MD (2007) Substrate-dependent inhibition kinetics of an active site-directed inhibitor of ADAMTS-4 (Aggrecanase 1). Biochemistry 46:6393–6401. doi:10.1021/bi7000642

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Li-dong Wu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Huang, K., Wu, Ld. Suppression of aggrecanase: a novel protective mechanism of dehydroepiandrosterone in osteoarthritis?. Mol Biol Rep 37, 1241–1245 (2010). https://doi.org/10.1007/s11033-009-9495-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-009-9495-5

Keywords

Navigation