Skip to main content
Log in

A novel 33-bp insertion in the promoter of TaMFT-3A is associated with pre-harvest sprouting resistance in common wheat

  • Published:
Molecular Breeding Aims and scope Submit manuscript

Abstract

TaMFT-3A on wheat chromosome 3AS, encoding a phosphatidyl ethanolamine-binding protein, was previously determined to be a candidate gene underlying the major quantitative trait locus (QTL) for pre-harvest sprouting (PHS) resistance. Three single nucleotide polymorphisms (SNPs) (−222, +646, and +666) and one insertion/deletion (InDel) variation at TaMFT-3A locus are associated with PHS resistance. In the present study, we detected a novel 33-bp InDel in the promoter (−194) of TaMFT-3A and developed a gene-specific marker (MFT-A2). Linkage mapping indicated that MFT-A2 co-segregated with a major QTL on chromosome 3AS for PHS resistance in the recombinant inbred line population from the cross of Annong 0711 × Henong 825, explaining 17.79 and 14.22% of phenotypic variations in 2016 and 2017, respectively. Association analysis also showed that the InDel was significantly associated with PHS resistance using 260 current wheat varieties (lines) and 183 Chinese mini-core wheat collections across environments. TaMFT-3A expression levels in genotypes with the resistance allele TaMFT-3Aa were significantly higher than those in varieties with the susceptible allele TaMFT-3Ab. Moreover, TaMFT-3A transcription was up-regulated in high-temperature and abscisic acid treatments, but down-regulated in low-temperature and gibberellic acid treatments. Notably, PHS resistance of varieties simultaneously carrying favorable haplotypes of SNP-222, SNP646/666, TaMFT-A1, and TaMFT-3A (designated Hap-11) was significantly higher than that of other haplotypes across environments. This study provides useful information for the use of the MFT-A2 marker for improvement of PHS resistance in wheat breeding, and for our better understanding of TaMFT-3A regulatory mechanism for PHS resistance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Bewley JD (1997) Seed germination and dormancy. Plant Cell 9:1055–1066

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Bradley D, Ratcliffe O, Vincent C, Carpenter R, Coen E (1997) Inflorescence commitment and architecture in Arabidopsis. Science 275:80–83

    Article  PubMed  CAS  Google Scholar 

  • Cantoro R, Crocco CD, Benecharnold RL, Rodríguez MV (2013) In vitro binding of sorghum bicolor transcription factors ABI4 and ABI5 to a conserved region of a GA 2-OXIDASE promoter: possible role of this interaction in the expression of seed dormancy. J Exp Bot 64:5721–5735

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Chang C, Feng JM, Si HQ, Yin B, Zhang HP, Ma CX (2010a) Validating a novel allele of viviparous-1 (Vp-1Bf) associated with high seed dormancy of Chinese wheat landrace, Wanxianbaimaizi. Mol Breed 25:517–525

    Article  CAS  Google Scholar 

  • Chang C, Zhang HP, Feng JM, Yin B, Si HQ, Ma CX (2010b) Identifying alleles of Viviparous-1B associated with pre-harvest sprouting in micro-core collections of Chinese wheat germplasm. Mol Breed 25:481–490

    Article  Google Scholar 

  • Chang C, Zhang HP, Zhao QX, Feng JM, Si HQ, Lu J, Ma CX (2011) Rich allelic variations of Viviparous-1A and their associations with seed dormancy/pre-harvest sprouting of common wheat. Euphytica 179:343–353

    Article  CAS  Google Scholar 

  • Finchsavage WE, Leubnermetzger G (2006) Seed dormancy and the control of germination. New Phytol 171:501–523

    Article  CAS  Google Scholar 

  • Flintham JE (2000) Different genetic components control coat-imposed and embryo-imposed dormancy in wheat. Seed Sci Res 10:43–50

    Article  Google Scholar 

  • Fofana B, Humphreys DG, Rasul G, Cloutier S, Brûlébabel A, Woods S, Lukow OM, Somers DJ (2009) Mapping quantitative trait loci controlling pre-harvest sprouting resistance in a red × white seeded spring wheat cross. Euphytica 165:509–521

    Article  CAS  Google Scholar 

  • Gaspar S, Fazekas J, Petho A (1975) Effects of gibberellic acid (GA3) and prechilling on breaking dormancy in cereals. Seed Sci Technol 3:555–563

    CAS  Google Scholar 

  • Gubler F, Millar AA, Jacobsen JV (2005) Dormancy release, ABA and pre-harvest sprouting. Curr Opin Plant Biol 8:183–187

    Article  PubMed  CAS  Google Scholar 

  • Hagemann MG, Ciha AJ (1987) Environment genotype effects on seed dormancy and after-ripening in wheat. Agron J 79:192–196

    Article  Google Scholar 

  • Himi E, Mares DJ, Yanagisawa A, Noda K (2002) Effect of grain colour gene (R) on grain dormancy and sensitivity of the embryo to abscisic acid (ABA) in wheat. J Exp Bot 53:1569–1574

    Article  PubMed  CAS  Google Scholar 

  • Himi E, Maekawa M, Miura H, Noda K (2011) Development of PCR markers for Tamyb10 related to R-1, red grain color gene in wheat. Theor Appl Genet 122:1561–1576

    Article  PubMed  CAS  Google Scholar 

  • Hu MJ, Zhang HP, Cao JJ, Zhu XF, Wang SX, Jiang H, Wu ZY, Lu J, Chang C, Sun GL, Ma CX (2016) Characterization of an IAA-glucose hydrolase gene TaTGW6 associated with grain weight in common wheat (Triticumaestivum L.). Mol Breed 36:25–36

    Article  CAS  Google Scholar 

  • Imtiaz M, Ogbonnaya FC, Oman J, Ginkel M (2008) Characterization of quantitative trait loci controlling genetic variation for preharvest sprouting in synthetic backcross-derived wheat lines. Genetics 178:1725–1736

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kardailsky I, Shukla VK, Ahn JH, Dagenais N, Christensen SK, Nguyen JT, Chory J, Harrison MJ, Weigel D (1999) Activation tagging of the floral inducer FT. Science 286:1962–1965

    Article  PubMed  CAS  Google Scholar 

  • Kobayashi Y, Kaya H, Goto K, Iwabuchi M, Araki T (1999) A pair of related genes with antagonistic roles in mediating flowering signals. Science 286:1960–1962

    Article  PubMed  CAS  Google Scholar 

  • Kumar JR, Kumar BT (2009) Quantitative trait loci (QTL) mapping for crop improvement. Res J Biotechnol 4(2):67–69

    Google Scholar 

  • Lei L, Zhu XK, Wang SW, Zhu MR, Carver BF, Yan LL (2013) TaMFT-A1 is associated with seed germination sensitive to temperature in winter wheat. PLOS ONE 8(9):e73330

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Li H, Ye G, Wang J (2007) A modified algorithm for the improvement of composite interval mapping. Genetics 175:361–374

    Article  PubMed  PubMed Central  Google Scholar 

  • Lin M, Cai SH, Wang S, Liu SB, Zhang GR, Bai GH (2015) Genotyping-by-sequencing (GBS) identified SNP tightly linked to QTL for pre-harvest sprouting resistance. Theor Appl Genet 128:1385–1395

    Article  PubMed  CAS  Google Scholar 

  • Liu SB, Cai SB, Graybosch R, Chen CX, Bai GH (2008) Quantitative trait loci for resistance to pre-harvest sprouting in US hard white winter wheat Rio Blanco. Theor Appl Genet 117:691–699

    Article  PubMed  CAS  Google Scholar 

  • Liu SB, Sehgal SK, Li JR, Lin M, Trick HN, Yu JM, Gill BS, Bai GH (2013a) Cloning and characterization of a critical regulator for pre-harvest sprouting in wheat. Genetics 195:263–273

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Liu XD, Zhang H, Zhao Y, Feng ZY, Li Q, Yang HQ, Luan S, Li JM, He ZH (2013b) Auxin controls seed dormancy through stimulation of abscisic acid signaling by inducing ARF-mediated ABI3 activation in Arabidopsis. PNAS 110(38):15485–15490

    Article  PubMed  PubMed Central  Google Scholar 

  • Liu SB, Sehgal SK, Lin M, Li J, Trick H, Gill BS, Bai GH (2015) Independent mis-splicing mutations in TaPHS1 causing loss of pre-harvest sprouting (PHS) resistance during wheat domestication. New Phytol 208:936–948

    Article  PubMed  CAS  Google Scholar 

  • Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(−△△Ct) method. Methods 25:402–408

    Article  PubMed  CAS  Google Scholar 

  • Magome H, Yamaguchi S, Hanada A, Kamiya Y, Oda K (2008) The DDF1 transcriptional activator upregulates expression of a gibberellin-deactivating gene, GA2ox7, under high-salinity stress in Arabidopsis. Plant J 56:613–626

    Article  PubMed  CAS  Google Scholar 

  • Mares D, Mrva K, Cheong J, Williams K, Watson B, Storlie E, Sutherland M, Zou Y (2005) A QTL located on chromosome 4A associated with dormancy in white- and red-grained wheats of diverse origin. Theor Appl Genet 111:1357–1364

    Article  PubMed  CAS  Google Scholar 

  • Mohan A, Kulwal P, Singh R, Kumar V, Mir RR, Kumar J, Prasad M, Balyan HS, Gupta PK (2009) Genome-wide QTL analysis for pre-harvest sprouting tolerance in bread wheat. Euphytica 168:319–329

    Article  CAS  Google Scholar 

  • Nakamura S, Komatsuda T, Miura H (2007) Mapping diploid wheat homologues of Arabidopsis seed ABA signaling genes and QTLs for seed dormancy. Theor Appl Genet 114:1129–1139

    Article  PubMed  CAS  Google Scholar 

  • Nakamura S, Abe F, Kawahigashi H, Nakazono K, Tagiri A, Matsumoto T, Utsugi S, Ogawa T, Handa H, Ishida H, Mori M, Kawaura K, Ogihara Y, Miura H (2011) A wheat homolog of MOTHER OF FT AND TFL1 acts in the regulation of germination. Plant Cell 23:3215–3229

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Nakamura S, Makiko C, Stehno Z, Holubec S, Morishige H, Pourkheirandish M, Kanamori H, Wu ZJ, Matsumoto T, Komatsuda T (2015) Diversification of the promoter sequences of wheat Mother of FT and TFL1 on chromosome 3A. Mol Breeding 35:164–172

    Article  CAS  Google Scholar 

  • Olszewski N, Sun TP, Gubler F (2002) Gibberellin signaling: biosynthesis, catabolism, and response pathways. Plant Cell 14:61–80

    Article  CAS  Google Scholar 

  • Reddy LV, Metzger RJ, Ching TM (1985) Effect of temperature on seed dormancy of wheat. Crop Sci 25:455–458

    Article  Google Scholar 

  • Shorinola O, Balcárková B, Hyles J, Tibbits J, Hayden MJ, Holušova K, Valárik M, Distelfeld A, Torada A, Barrero JM, Uauy C (2017) Haplotype analysis of the pre-harvest sprouting resistance locus Phs-A1 reveals a causal role of TaMKK3-A in global germplasm. Front Plant Sci 8:1555–1568

    Article  PubMed  PubMed Central  Google Scholar 

  • Shu K, Zhang H, Wang S, Chen M, Wu Y, Tang S, Liu CY, Feng YQ, Cao XF, Xie Q (2013) ABI4 regulates primary seed dormancy by regulating the biogenesis of abscisic acid and gibberellins in Arabidopsis. PLoS Genet 9:e1003577

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Torada A, Koike M, Ogawa T, Takenouchi Y, Tadamura K, Wu J, Matsumoto T, Kawaura K, Ogihara Y (2016) A causal gene for seed dormancy on wheat chromosome 4A encodes a MAP kinase. Curr Biol 26:782–787

    Article  PubMed  CAS  Google Scholar 

  • Warner RL, Kudrna DA, Spaeth SC, Jones SS (2000) Dormancy in wheat-grain mutants of Chinese Spring wheat (Triticum aestivum L.)Seed Sci Res 10: 51–60

  • Xi WY, Liu C, Hou XL, Yu H (2010) MOTHER OF FT AND TFL1 regulates seed germination through a negative feedback loop modulating ABA signaling in Arabidopsis. Plant Cell 22:1733–1748

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Xia LQ, Ganal MW, Shewry PR, He ZH, Yang Y, Röder MS (2008) Exploiting the diversity of Viviparous-1 gene associated with pre-harvest sprouting tolerance in European wheat varieties. Euphytica 159:411–417

    Article  CAS  Google Scholar 

  • Xiao SH, Zhang XY, Yan CS, Lin H (2002) Germplasm improvement for preharvest sprouting resistance in Chinese white grained wheat: an overview of the current strategy. Euphytica 126:35–38

    Article  CAS  Google Scholar 

  • Yaish MW, Elkereamy A, Zhu T, Beatty PH, Good AG, Bi YM, Rothstein SJ (2010) The APETALA-2-like transcription factor OSA2-39 controls key interactions between abscisic acid and gibberellin in rice. PLoS Genet 6:e1001098

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Yamagishi K, Tatematsu K, Yano R, Preston J, Kitamura S, Takahashi H, Mccourt P, Kamiya Y, Nambara E (2009) CHOTTO1, a double AP2 domain protein of Arabidopsis thaliana, regulates germination and seedling growth under excess supply of glucose and nitrate. Plant Cell Physiol 50:330–340

    Article  PubMed  Google Scholar 

  • Yang Y, Zhao XL, Xia LQ, Chen XM, Xia XC, Yu Z, He ZH, Rŏder M (2007) Development and validation of a Viviparous-1 STS marker for pre-harvest sprouting tolerance in Chinese wheat. Theor Appl Genet 115:971–980

    Article  PubMed  CAS  Google Scholar 

  • Yano R, Kanno Y, Jikumaru Y, Nakabayashi K, Kamiya Y, Nambara E (2009) CHOTTO1, a putative double APETALA2 repeat transcription factor, is involved in abscisic acid-mediated repression of gibberellin biosynthesis during seed germination in Arabidopsis. Plant Physiol 151:641–654

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zhang YJ, Miao XL, Xia XC, He ZH (2014) Cloning of seed dormancy genes (TaSdr) associated with tolerance to pre-harvest sprouting in common wheat and development of a functional marker. Theor Appl Genet 127:855–866

    Article  PubMed  CAS  Google Scholar 

  • Zhang YJ, Xia XC, He ZH (2017) The seed dormancy allele TaSdr-A1a associated with pre-harvest sprouting tolerance is mainly present in Chinese wheat landraces. Theor Appl Genet 130:81–89

    Article  PubMed  Google Scholar 

  • Zhu YL, Wang SX, Zhao LX, Zhang DX, Hu JB, Yang YJ, Chang C, Ma CX, Zhang HP (2014) Exploring molecular markers of preharvest sprouting resistance gene using wheat intact spikes by association analysis. Acta Agron Sin 40:1725–1732 (in Chinese with English abstract)

    Article  CAS  Google Scholar 

  • Zhu YL, Wang SX, Zhang HP, Zhao LX, Wu ZY, Jiang H, Cao JJ, Liu K, Qin M, Lu J, Sun GL, Xia XC, Chang C, Ma CX (2016) Identification of major loci for seed dormancy at different post-ripening stages after harvest and validation of a novel locus on chromosome 2AL in common wheat. Mol Breed 36:174–186

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank Prof. Ji-Zeng Jia for kindly providing the 183 Chinese mini-core collections. We also thank Prof. Ray Rose for revising the manuscript.

Funding

This work was supported by grants from the National Natural Science Foundation of China (31401372), the China Agriculture Research System (CARS-03), the promotion project of high education of Anhui province “Team construction of high level teacher of crop discipline,” Wheat genetics and breeding research platform innovation team of Anhui’s University, Jiangsu Collaborative Innovation Center for Modern Crop Production (JCIC-MCP), the Agriculture Research System of Anhui Province (AHCYTX-02), and the introduced leading talent research team for Universities in Anhui Province.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hai-Ping Zhang or Chuan-Xi Ma.

Electronic supplementary material

ESM 1

(DOCX 168 kb)

ESM 2

(XLSX 18 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jiang, H., Zhao, LX., Chen, XJ. et al. A novel 33-bp insertion in the promoter of TaMFT-3A is associated with pre-harvest sprouting resistance in common wheat. Mol Breeding 38, 69 (2018). https://doi.org/10.1007/s11032-018-0830-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11032-018-0830-1

Keywords

Navigation