Skip to main content
Log in

Reference genes for transcriptional analysis of flowering and fruit ripening stages in apple (Malus × domestica Borkh.)

  • Published:
Molecular Breeding Aims and scope Submit manuscript

An Erratum to this article was published on 13 May 2014

Abstract

Apple (Malus × domestica Borkh.) is the most important deciduous tree fruit crop grown around the world. Comparisons of gene expression profiles from different tissues, conditions or cultivars are valuable scientific tools to better understand the gene expression changes behind important silvicultural and nutritional traits. However, the accuracy of techniques employed to access gene expression is dependent on the evaluation of stable reference genes for data normalization to avoid statistical significance undue or incorrect conclusions. The objective of this work was to select the best genes to be used as references for gene expression studies in apple trees by reverse transcription-quantitative polymerase chain reaction (RT-qPCR). Vegetative and reproductive tissues of the apple “Gala” cultivar were evaluated during their seasonal cycle of growth and dormancy. The expression of 23 traditional housekeeping genes or genes suggested as constitutive by microarray data was investigated. Tested combinations of primers allowed the specific amplification and the generation of suitable efficiency curves for gene expression studies by RT-qPCR. Gene stability was determined by two different statistical descriptors, geNorm and NormFinder. The known variable PAL gene expression was used to validate selected normalizers. Results obtained allowed us to conclude that MDH, SAND, THFS, TMp1 and WD40 are the best reference genes to accurately normalize the relative transcript abundances using RT-qPCR in various tissues of apple.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

ACT2:

Actin 2

ACT11:

Actin 11

ACTfam:

Actin family

ARC5:

Accumulation and replication of chloroplast 5

C3HC4:

Ring C3HC4 zinc finger protein

CDC48:

Cell division cycle protein 48 homolog

CKL:

Casein kinase 1 isoform delta like

Ct:

Cycle threshold

DFCI:

Dana Farber Cancer Institute and the Harvard School of Public Health

DLD:

Dihydrolipoamide dehydrogenase

E:

Efficiencies

EF1α:

Elongation factor 1 alpha

EF1β:

Elongation factor 1 beta

EST:

Expressed sequence tag

GAPDH:

Glyceraldehyde 3-phosphate dehydrogenase

KEA1:

K+ efflux antiporter 1

M:

Expression stability

MDH:

Malate dehydrogenase

miRNAs:

MicroRNAs

NF:

Normalization factor

PAL:

Phenylalanine ammonia-lyase

PCS:

Phytochelatin synthetase-like protein

PP2A-1:

Serine/threonine-protein phosphatase 2A-1

PP2A-A3:

Serine/threonine-protein phosphatase 2A subunit A3

R 2 :

Correlation coefficient

RT-qPCR:

Reverse transcription-quantitative polymerase chain reaction

SAGE:

Serial analysis of gene expression

SAND:

Protein of unknown function SAND family

THFS:

Formate-tetrahydrofolate ligase

T m :

Melting temperatures

TMp1:

Type 1 membrane protein like

TUBα5:

Tubulin alpha 5

TUBβ6:

Tubulin beta 6

UBC10:

Ubiquitin-conjugating enzyme 10

V:

Pairwise variation

WD40:

Transcription factor WD40-like repeat domain

References

  • Andersen CL, Jensen JL, Ørntoft TF (2004) Normalization of real-time quantitative reverse transcription-PCR data: a model-based variance estimation approach to identify genes suited for normalization, applied to bladder and colon cancer data sets. Cancer Res 64:5245–5250

    Article  PubMed  CAS  Google Scholar 

  • Artico S, Nardeli SM, Brilhante O, Grossi-de-Sa MF, Alves-Ferreira M (2010) Identification and evaluation of new reference genes in Gossypium hirsutum for accurate normalization of real-time quantitative RT-PCR data. BMC Plant Biol 10:49–60

    Article  PubMed  PubMed Central  Google Scholar 

  • Baldo A, Norelli JL, Farrell RE, Bassett CL, Aldwinckle HS, Malnoy M (2010) Identification of genes differentially expressed during interaction of resistant and susceptible apple cultivars (Malus × domestica) with Erwinia amylovora. BMC Plant Biol 10:1

    Article  PubMed  PubMed Central  Google Scholar 

  • Barsalobres-Cavallari CF, Severino FE, Maluf MP, Maia IG (2009) Identification of suitable internal control genes for expression studies in Coffea arabica under different experimental conditions. BMC Mol Biol 10:1

    Article  PubMed  PubMed Central  Google Scholar 

  • Brunner AM, Yakovlev IA, Strauss SH (2004) Validating internal controls for quantitative plant gene expression studies. BMC Plant Biol 4:14–20

    Article  PubMed  PubMed Central  Google Scholar 

  • Bustin SA (2010) Why the need for qPCR publication guidelines?—The case for MIQE. Methods 50:217–226

    Article  PubMed  CAS  Google Scholar 

  • Bustin SA, Benes V, Garson JA, Hellemans J, Huggett J, Kubista M, Mueller R et al (2009) The MIQE guidelines: minimum information for publication of quantitative real-time PCR experiments. Clin Chem 55:611–622

    Article  PubMed  CAS  Google Scholar 

  • Cassan-Wang H, Soler M, Yu H, Camargo EL, Carocha V, Ladouce N, Savelli B, Paiva JA, Leplé JC, Grima-Pettenati J (2012) Reference genes for high-throughput quantitative reverse transcription-PCR analysis of gene expression in organs and tissues of Eucalyptus grown in various environmental conditions. Plant Cell Physiol 53:2101–2116

    Article  PubMed  CAS  Google Scholar 

  • Chagné D, Crowhurst RN, Troggio M, Davey MW, Gilmore B, Lawley C, Vanderzande S et al (2012) Genome-wide SNP detection, validation, and development of an 8 K SNP array for apple. PLoS ONE 7:e31745

    Article  PubMed  PubMed Central  Google Scholar 

  • Clarke JD, Zhu T (2006) Microarray analysis of the transcriptome as a stepping stone towards understanding biological systems: practical considerations and perspectives. Plant J 45:630–650

    Article  PubMed  CAS  Google Scholar 

  • Coker JS, Davies E (2003) Selection of candidate housekeeping controls in tomato plants using EST data. Biotechniques 35:740–748

    PubMed  CAS  Google Scholar 

  • Czechowski T, Stitt M, Altmann T, Udvardi MK (2005) Genome-wide identification and testing of superior reference genes for transcript normalization. Plant Physiol 139:5–17

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • de Almeida MR, Ruedell CM, Ricachenevsky FK, Sperotto RA, Pasquali G, Fett-Neto AG (2010) Reference gene selection for quantitative reverse transcription-polymerase chain reaction normalization during in vitro adventitious rooting in Eucalyptus globulus Labill. BMC Mol Biol 11:73–84

    Article  PubMed  PubMed Central  Google Scholar 

  • Derveaux S, Vandesompele J, Hellemans J (2010) How to do successful gene expression analysis using real-time PCR. Methods 50:227–230

    Article  PubMed  CAS  Google Scholar 

  • Dheda K, Huggett JF, Chang JS, Kim LU, Bustin SA, Johnson MA, Rook GAW et al (2005) The implications of using an inappropriate reference gene for real-time reverse transcription PCR data normalization. Anal Biochem 344:141–143

    Article  PubMed  CAS  Google Scholar 

  • EPPO (European and Mediterranean Plant Protection Organization) (1984) EPPO crop growth stage keys—apple and pear. EPPO Bull 14:291–294

    Article  Google Scholar 

  • Expósito-Rodríguez M, Borges AA, Borges-Pérez A, Pérez JA (2008) Selection of internal control genes for quantitative real-time RT-PCR studies during tomato development process. BMC Plant Biol 8:131–142

    Article  PubMed  PubMed Central  Google Scholar 

  • FAO (Food and Agriculture Organization of the United Nations) (2012) Food and Agriculture Organization of the United Nations—FAOSTAT

  • Garcia-Bañuelos ML, Gardea AA, Winzerling JJ, Vazquez-Moreno L (2009) Characterization of a midwinter-expressed dehydrin (DHN) gene from apple trees (Malus × domestica). Plant Mol Biol Rep 27:476–487

    Article  Google Scholar 

  • Gutierrez L, Mauriat M, Guénin S, Pelloux J, Lefebvre J-F, Louvet R, Rusterucci C et al (2008a) The lack of a systematic validation of reference genes: a serious pitfall undervalued in reverse transcription-polymerase chain reaction (RT-PCR) analysis in plants. Plant Biotechnol J 6:609–618

    Article  PubMed  CAS  Google Scholar 

  • Gutierrez L, Mauriat M, Pelloux J, Bellini C, Van Wuytswinkel O (2008b) Towards a systematic validation of references in real-time RT-PCR. Plant Cell 20:1734–1735

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Heide OM, Prestrud AK (2005) Low temperature, but not photoperiod, controls growth cessation and dormancy induction and release in apple and pear. Tree Physiol 25:109–114

    Article  PubMed  CAS  Google Scholar 

  • Hong S-Y, Seo PJ, Yang M-S, Xiang F, Park C-M (2008) Exploring valid reference genes for gene expression studies in Brachypodium distachyon by real-time PCR. BMC Plant Biol 8:112–122

    Article  PubMed  PubMed Central  Google Scholar 

  • Hummer KE, Janick J (2009) Rosaceae: taxonomy, economic importance, genomics. In: Folta KM, Gardiner SE (eds) Plant genetics and genomics vol 6: genetics and genomics of Rosaceae (p 636). Springer, New York, pp 1–17

  • Iskandar HM, Simpson RS, Casu RE, Bonnett GD, Maclean DJ, Manners JM (2004) Comparison of reference genes for quantitative real-time polymerase chain reaction analysis of gene expression in sugarcane. Plant Mol Biol Rep 22:325–337

    Article  CAS  Google Scholar 

  • Jain M, Nijhawan A, Tyagi AK, Khurana JP (2006) Validation of housekeeping genes as internal control for studying gene expression in rice by quantitative real-time PCR. Biochem Bioph Res Com 345:646–651

    Article  CAS  Google Scholar 

  • Jensen PJ, Makalowska I, Altman N, Fazio G, Praul C, Maximova SN, Crassweller RM et al (2009) Rootstock-regulated gene expression patterns in apple tree scions. Tree Genet Genomes 6:57–72

    Article  Google Scholar 

  • Jian B, Liu B, Bi Y, Hou W, Wu C, Han T (2008) Validation of internal control for gene expression study in soybean by quantitative real-time PCR. BMC Mol Biol 9:59–72

    Article  PubMed  PubMed Central  Google Scholar 

  • Jiang S, Sun Y, Wang S (2011) Selection of reference genes in peanut seed by real-time quantitative polymerase chain reaction. Int J Food Sci Tech 46:2191–2196

    Article  CAS  Google Scholar 

  • Kellerhals M (2009) Introduction to apple (Malus × domestica). In: Folta KM, Gardiner SE (eds) Plant genetics and genomics vol 6: genetics and genomics of Rosaceae (p. 636). Springer, New York, pp 73–84

  • Kosina J (2010) Effect of dwarfing and semi dwarfing apple rootstocks on growth and productivity of selected apple cultivars. Hortic Sci 37:121–126

    Google Scholar 

  • Kulcheski FR, Marcelino FC, Nepomuceno AL, Abdelnoor RV, Margis R (2010) The use of microRNAs as reference genes for quantitative polymerase chain reaction in soybean. Anal Biochem 406:185–192

    Article  PubMed  CAS  Google Scholar 

  • Kumar S, Chagné D, Bink MCAM, Volz RK, Whitworth C, Carlisle C (2012) Genomic selection for fruit quality traits in apple (Malus × domestica Borkh.). PLoS ONE 7:e36674

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Łata B, Trampczynska A, Paczesna J (2009) Cultivar variation in apple peel and whole fruit phenolic composition. Sci Hortic 121:176–181

    Article  Google Scholar 

  • Lin YL, Lai ZX (2010) Reference gene selection for qPCR analysis during somatic embryogenesis in longan tree. Plant Sci 178:359–365

    Article  CAS  Google Scholar 

  • Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(−delta deltaC(T)) method. Methods 25:402–408

    Article  PubMed  CAS  Google Scholar 

  • Long X-Y, Wang J-R, Ouellet T, Rocheleau H, Wei Y-M, Pu Z-E, Jiang Q-T et al (2010) Genome-wide identification and evaluation of novel internal control genes for Q-PCR based transcript normalization in wheat. Plant Mol Biol 74:307–311

    Article  PubMed  CAS  Google Scholar 

  • Løvdal T, Lillo C (2009) Reference gene selection for quantitative real-time PCR normalization in tomato subjected to nitrogen, cold, and light stress. Anal Biochem 387:238–242

    Article  PubMed  Google Scholar 

  • Maric S, Lukic M, Cerovic R, Mitrovic M, Boskovic R (2010) Application of molecular markers in apple breeding. Genetika 42:359–375

    Article  Google Scholar 

  • Martin RC, Hollenbeck VG, Dombrowski JE (2008) Evaluation of reference genes for quantitative RT-PCR in Lolium perenne. Crop Sci 48:1881–1887

    Article  CAS  Google Scholar 

  • Milčevičová R, Gosch C, Halbwirth H, Stich K, Hanke M-V, Peil A, Flachowsky H et al (2010) Erwinia amylovora-induced defense mechanisms of two apple species that differ in susceptibility to fire blight. Plant Sci 179:60–67

    Article  Google Scholar 

  • Newcomb R, Crowhurst RN, Gleave AP, Rikkerink EHA, Allan AC, Beuning LL et al (2006) Analyses of expressed sequence tags from apple. Plant Physiol 141:147–166

    Article  PubMed  PubMed Central  Google Scholar 

  • Nicot N, Hausman JF, Hoffmann L, Evers D (2005) Housekeeping gene selection for real-time RT-PCR normalization in potato during biotic and abiotic stress. J Exp Bot 56:2907–2914

    Article  PubMed  CAS  Google Scholar 

  • Norelli JL, Farrell RE Jr, Bassett CL, Baldo AM, Lalli DA, Aldwinckle HS, Wisniewski ME (2009) Rapid transcriptional response of apple to fire blight disease revealed by cDNA suppression subtractive hybridization analysis. Tree Genet Genomes 5:27–40

    Article  Google Scholar 

  • Oliveira LA, Breton MC, Bastolla FM, Camargo SS, Margis R, Frazzon J, Pasquali G (2012) Reference genes for the normalization of gene expression in Eucalyptus species. Plant Cell Physiol 53:405–422

    Article  PubMed  Google Scholar 

  • Pichler FB, Walton EF, Davy M, Triggs C, Janssen B, Wünsche JN, Putterill J et al (2007) Relative developmental, environmental, and tree-to-tree variability in buds from field-grown apple trees. Tree Genet Genomes 3:329–339

    Article  Google Scholar 

  • Radonic A, Thulke S, Mackay IM, Landt O, Siegert W, Nitsche A (2004) Guideline to reference gene selection for quantitative real-time PCR. Biochem Biophys Res Commun 313:856–862

    Article  PubMed  CAS  Google Scholar 

  • Reid K, Olsson N, Schlosser J, Peng F, Lund S (2006) An optimized grapevine RNA isolation procedure and statistical determination of reference genes for real-time RT-PCR during berry development. BMC Plant Biol 6:27–37

    Article  PubMed  PubMed Central  Google Scholar 

  • Remans T, Smeets K, Opdenakker K, Mathijsen D, Vangronsveld J, Cuypers A (2008) Normalisation of real-time RT-PCR gene expression measurements in Arabidopsis thaliana exposed to increased metal concentrations. Planta 227:1343–1349

    Article  PubMed  CAS  Google Scholar 

  • Sarowar S, Zhao Y, Soria-Guerra RE, Ali S, Zheng D, Wang D, Korban SS (2011) Expression profiles of differentially regulated genes during the early stages of apple flower infection with Erwinia amylovora. J Exp Bot 62:4851–4861

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Schmidt GW, Delaney SK (2010) Stable internal reference genes for normalization of real-time RT-PCR in tobacco (Nicotiana tabacum) during development and abiotic stress. Mol Genet Genomics 283:233–241

    Article  PubMed  CAS  Google Scholar 

  • Soglio V, Costa F, Molthoff JW, Weemen-Hendriks WMJ, Schouten HJ, Gianfranceschi L (2009) Transcription analysis of apple fruit development using cDNA microarrays. Tree Genet Genomes 5:685–698

    Article  Google Scholar 

  • Tong Z, Gao Z, Wang F, Zhou J, Zhang Z (2009) Selection of reliable reference genes for gene expression studies in peach using real-time PCR. BMC Mol Biol 10:71–83

    Article  PubMed  PubMed Central  Google Scholar 

  • Tu L, Zhang X, Liu D, Jin S, Cao J, Zhu L, Deng F et al (2007) Suitable internal control genes for qRT-PCR normalization in cotton fiber development and somatic embryogenesis. Chin Sci Bull 52:3110–3117

    Article  CAS  Google Scholar 

  • Vandesompele J, De Preter K, Pattyn F, Poppe B, Van Roy N, De Paepe A, Speleman F (2002) Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes. Genome Biol 3:1–12

    Article  Google Scholar 

  • Velasco R, Zharkikh A, Affourtit J, Dhingra A, Cestaro A, Kalyanaraman A, Fontana P et al (2010) The genome of the domesticated apple (Malus × domestica Borkh.). Nat Genet 42:833–839

    Article  PubMed  CAS  Google Scholar 

  • Walker NJ (2002) A technique whose time has come. Science 296:557–559

    Article  PubMed  CAS  Google Scholar 

  • Wan H, Zhao Z, Qian C, Sui Y, Malik AA, Chen J (2010) Selection of appropriate reference genes for gene expression studies by quantitative real-time polymerase chain reaction in cucumber. Anal Biochem 399:257–261

    Article  PubMed  CAS  Google Scholar 

  • Wan H, Yuan W, Ruan M, Ye Q, Wang R, Li Z, Zhou G et al (2011) Identification of reference genes for reverse transcription quantitative real-time PCR normalization in pepper (Capsicum annuum L.). Biochem Biophys Res Commun 416:24–30

    Article  PubMed  CAS  Google Scholar 

  • Wei J, Ma F, Shi S, Qi X, Zhu X, Yuan J (2010) Changes and postharvest regulation of activity and gene expression of enzymes related to cell wall degradation in ripening apple fruit. Postharvest Biol Technol 56:147–154

    Article  CAS  Google Scholar 

  • Wisniewski M, Bassett C, Norelli J, Macarisin D, Artlip T, Gasic K, Korban S (2008) Expressed sequence tag analysis of the response of apple (Malus × domestica ‘Royal Gala’) to low temperature and water deficit. Physiol Plantarum 133:298–317

    Article  CAS  Google Scholar 

  • Zeng Y, Yang T (2002) RNA isolation from highly viscous samples rich in polyphenols and polysaccharides. Plant Mol Biol Report 20:417a–417e

    Article  Google Scholar 

Download references

Acknowledgments

We thank Vanessa Buffon for technical assistance, and Diogo Denardi Porto and Vítor da Silveira Falavigna for helpful contributions on the manuscript. We also gratefully acknowledge our colleague Dr. João Caetano Fioravanço for his assistance in the sampling strategy and for the management of the experimental apple orchards. This work was supported by “Financiadora de Estudos e Projetos” (FINEP, Ministry of Science and Technology—MCT [grant number 01.10.0303.00]) and “Empresa Brasileira de Pesquisa Agropecuária” (EMBRAPA grant number 02.07.07.007.00.03), Brazil. P. Perini was recipient of a M.Sc. fellowship from the “Coordenação de Aperfeiçoamento de Pessoal de Nível Superior” (CAPES, Ministry of Education), Brazil. M. Margis-Pinheiro and G. Pasquali are recipients of research fellowships from the “Conselho Nacional de Desenvolvimento Científico e Tecnológico” (CNPq, MCT [Grant Numbers 306945/2009-6 and 311361/2009-9, respectively).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luís Fernando Revers.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Perini, P., Pasquali, G., Margis-Pinheiro, M. et al. Reference genes for transcriptional analysis of flowering and fruit ripening stages in apple (Malus × domestica Borkh.). Mol Breeding 34, 829–842 (2014). https://doi.org/10.1007/s11032-014-0078-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11032-014-0078-3

Keywords

Navigation