Skip to main content
Log in

Dwarfism in Brassica napus L. induced by the over-expression of a gibberellin 2-oxidase gene from Arabidopsis thaliana

  • Published:
Molecular Breeding Aims and scope Submit manuscript

Abstract

Gibberellins (GAs) are endogenous hormones that play an important role in regulating plant stature by increasing cell division and elongation in stem internodes. The GA2-oxidase gene from Arabidopsis thaliana (AtGA2ox8) was introduced into Brassica napus L. by Agrobacterium-mediated floral-dip transformation with the aim of decreasing the amount of bioactive GA and hence reducing plant stature. As anticipated, the transgenic plants exhibited dwarf phenotype. Compared with the wild type, the transgenic plants had increased primary branches (by 14.1–15.3%) and siliques (by 10.8–15.2%), which resulted in a significant increase in the seed yield (by 9.6–12.4%). Moreover, the contents of anthocyanin in leaves of 60-day-old transgenic plants was about 9.4-fold higher in winter and about 6.8-fold higher in summer than the wild type. These excellent agronomic traits of the transgenic plants could not only improve the lodging resistance and seed yields, but also protect them against stress. Therefore, the over-expression of AtGA2ox8 might be used to produce dwarf varieties and increase seed yield in Brassica napus L.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

PCR:

Polymerase chain reaction

SDS:

Sodium dodecyl sulfate

CTAB:

Hexadecyltrimethylammonium bromide

PVDF:

Polyvinylidene fluoride

References

  • Agharkar M, Lomba P, Altpeter F, et al (2007) Stable expression of AtGA2ox1 in a low-input turfgrass (Paspalum notatum Flugge) reduces bioactive gibberellin levels and improves turf quality under field conditions. Plant Biotechnol J 5(6):791–801

    Google Scholar 

  • Biemelt S, Tschiersch H, Sonnewald U (2004) Impact of altered gibberellin metabolism on biomass accumulation, lignin biosynthesis, and photosynthesis in transgenic tobacco plants. Plant Physiol 135:254–265

    Article  PubMed  CAS  Google Scholar 

  • Brown CR, Wrolstad R, Durst R, Yang CP, Clevidence B (2003) Breeding studies in potatoes containing high concentrations of anthocyanins. Am J Potato Res 80:241–250

    Article  CAS  Google Scholar 

  • Busov VB, Meilan R, Pearce DW, Ma CP, Rood SB, Strauss SH (2003) Activation tagging of a dominant gibberellin catabolism gene (GA 2-oxidase) from poplar that regulates tree stature. Plant Physiol 132:1283–1291

    Article  PubMed  CAS  Google Scholar 

  • Christie PJ, Alfenito MR, Walbot V (1994) Impact of low temperature stress on general phenylpropanoid and anthocyanin pathways: enhancement of transcript abundance and anthocyanin pigmentation in maize seedlings. Planta 194:541–549

    Article  CAS  Google Scholar 

  • de Pascual-Teresa S, Sanchez-Ballesta MT (2008) Anthocyanins: from plant to health. Phytochem Rev 7:281–299

    Article  Google Scholar 

  • Dijkstra C, Adams E, Bhattacharya A et al (2008) Over-expression of a gibberellin 2-oxidase gene from Phaseolus coccineus L. enhances gibberellin inactivation and inducesn dwarfism in Solanum species. Plant Cell Rep 27:463–470

    Article  PubMed  CAS  Google Scholar 

  • Ervin EH, Koski AJ (1998) Growth responses of Lolium perenne L. to trinexapac-ethyl. HortScience 33:1200–1202

    CAS  Google Scholar 

  • Folta KM, Spalding EP (2001) Opposing roles of phytochrome A and phytochrome B in early cryptochrome-mediated growth inhibition. Plant J 28:333–340

    Article  PubMed  CAS  Google Scholar 

  • Foster KR, Miller FR, Childs KL et al (1994) Genetic regulation of development in Sorghum bicolor VIII Shoot growth, tillering, flowering, gibberellin biosynthesis and phytochrome levels are differentially affected by dosage of the ma3 allele. Plant Physiol 105:941–948

    PubMed  CAS  Google Scholar 

  • Gandikota M, de Kochko A, Chen L et al (2001) Development of transgenic rice plants expressing maize anthocyanin genes and increased blast resistance. Mol Breed 7:73–83

    Article  CAS  Google Scholar 

  • Hansen LB, Siegismund HR, Jorgensen RB (2003) Progressive introgression between Brassica napus (oilseed rape) and B. rapa. Heredity 91:276–283

    Article  PubMed  CAS  Google Scholar 

  • Harberd NP, King KE, Carol P, Cowling RJ, Peng J, Richards DE (1998) Gibberellin: inhibitor of an inhibitor of …? BioEssay 20:1001–1008

    Article  CAS  Google Scholar 

  • Hedden P (2003) The genes of the green revolution. Trends Genet 19:5–9

    Article  PubMed  CAS  Google Scholar 

  • Hedden P, Phillips AL (2000) Gibberellin metabolism: new insights revealed by the genes. Trends Plant Sci 5:523–530

    Article  PubMed  CAS  Google Scholar 

  • Hedden P, Phillips AL, Coles J, Thomas S, Appleford N, Ward D, Beale M, Lenton J (1999) Gibberellin biosynthesis: genes, regulation and genetic manipulation. Riken Rev 21:29–30

    CAS  Google Scholar 

  • Herrel HD, Bergfeld R, Mohr H (1984) Photooxidative destruction of chloroplasts and its consequences for anthocyanin synthesis. Proc Indian Acad Sci Plant Sci 3:245–251

    Google Scholar 

  • Hinderer W, Petersen M, Seitz HU (1984) Inhibition of flavonoid biosynthesis by gibberellic acid in cell suspension cultures of Daucus carota L. Planta 160:544–549

    Article  CAS  Google Scholar 

  • Janda T, Szalal G, Aldi EP (1996) Chlorophyll fluorescence and anthocyanin content in chilled maize plants after return to a non-chilling temperature under various irradiances. Biologia Plantarum 38(4):625–627

    Article  CAS  Google Scholar 

  • Johnson ET, Dowd PF (2004) Differentially enhanced insect resistance, at a cost, in Arabidopsis thaliana constitutively expressing a transcription factor of defensive metabolites. J Agric Food Chem 52:5135–5138

    Article  PubMed  CAS  Google Scholar 

  • Juszczuk IM, Wiktorowska A, Malusá E et al (2004) Changes in the concentration of phenolic compounds and exudation induced by phosphate deficiency in bean plants (Phaseolus vulgaris L.). Plant Soil 267:41–49

    Article  CAS  Google Scholar 

  • Khush GS (2001) Green revolution: the way forward. Nat Rev Genet 2:815–822

    Article  PubMed  CAS  Google Scholar 

  • Koornneef M, van der Veen JH (1980) Induction and analysis of gibberellin sensitive mutants in Arabidopsis thaliana (L.) Heynh. Theor Appl Genet 58:257–263

    Article  Google Scholar 

  • Leng P, Itamura H, Yamamura H, Deng XM (2000) Anthocyanin accumulation in apple and peach shoots during cold acclimation. Sci Hortic 83:43–50

    Article  CAS  Google Scholar 

  • Li J, OuLee TM, Raba R et al (1993) Arabidopsis flavonoid mutants are hypersensitive to UV-B irradiation. Plant Cell 5:171–179

    Article  PubMed  CAS  Google Scholar 

  • Lin CT, Ahmad M, Cashmore AR (1996) Arabidopsis cryptochrome 1 is a soluble protein mediating blue-light-regulated plant growth and development. Plant J 10:893–902

    Article  PubMed  CAS  Google Scholar 

  • Lo SF, Yang SY, Chen KT et al (2008) A novel class of gibberellin 2-oxidases control semidwarfism, tillering, and root development in rice. Plant Cell 20:2603–2618

    Article  PubMed  CAS  Google Scholar 

  • Loreti E, Povero G, Novi G, Solfanelli C, Alpi A, Peratal P (2008) Gibberellins, jasmonate and abscisic acid modulate the sucrose-induced expression of anthocyanin biosynthetic genes in Arabidopsis. New Phytol 179:1004–1016

    Article  PubMed  CAS  Google Scholar 

  • Monna L, Kitazawa Noriyuki, Yoshino Rika et al (2002) Positional cloning of rice semidwarfing gene, sd-1: rice “green revolution gene” encodes a mutant enzyme involved in gibberellin synthesis. DNA Res 9:11–17

    Article  PubMed  CAS  Google Scholar 

  • Muangprom A, Mauriera I, Osborn TC (2006) Transfer of a dwarf gene from Brassica rapa to oilseed B. napus, effects on agronomic traits, and development of a ‘perfect’ marker for selection. Mol Breed 17:101–110

    Google Scholar 

  • Muangprom A, Osborn TC (2004) Characterization of a dwarf gene in Brassica rapa, including the identification of a candidate gene. Theor Appl Genet 108:1378–1384

    Article  PubMed  CAS  Google Scholar 

  • Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassays of tobacco tissue cultures. Physiol Plant 15:473–497

    Article  CAS  Google Scholar 

  • Murray MG, Thompson WF (1980) Rapid isolation of high molecular weight plant DNA. Nucleic Acids Res 8:4321–4325

    Article  PubMed  CAS  Google Scholar 

  • Panagiota K, Yiannis M (2006) The importance of being red when young: anthocyanins and the protection of young leaves of Quercus coccifera from insect herbivory and excess light. Tree Physiol 26:613–621

    Article  Google Scholar 

  • Peng JR, Richards DE, Hartley NM et al (1999) ‘Green revolution’ genes encode mutant gibberellin response modulators. Nature 400:256–261

    Article  PubMed  CAS  Google Scholar 

  • Piero ARL, Puglisi I, Rapisarda P, Petrone G (2005) Anthocyanins accumulation and related gene expression in red orange fruit induced by low temperature storage. J Agric Food Chem 53:9083–9088

    Article  PubMed  Google Scholar 

  • Radi A, Lange T, Niki T et al (2005) Ectopic expression of pumpkin gibberellin oxidases alters gibberellin biosynthesis and development of transgenic Arabidopsis plants. Plant Physiol 140:528–536

    Article  PubMed  Google Scholar 

  • Rood SB, Pearce D, Williams PH, Pharis RP (1989) A gibberellin-deficient brassica mutant-rosette1. Plant Physiol 89:482–487

    Article  PubMed  CAS  Google Scholar 

  • Sakamoto T, Kobayashi M, Itoh H et al (2001) Expression of a gibberellin 2-oxidase gene around the shoot apex is related to phase transition in rice. Plant Physiol 125:1508–1516

    Article  PubMed  CAS  Google Scholar 

  • Sakamoto T, Morinaka Y, Ishiyama K et al (2003) Genetic manipulation of gibberellin metabolism in transgenic rice. Nat. Biotechnol 21:909–913

    Article  CAS  Google Scholar 

  • Sasaki A, Ashikari M, Ueguchi-Tanaka M, Itoh H et al (2002) Green revolution: a mutant gibberellin-synthesis gene in rice. Nature 416:701–702

    Article  PubMed  CAS  Google Scholar 

  • Saure MC (1990) External control of anthocyanin formation in apple. Sci Hortic 42:181–218

    Article  CAS  Google Scholar 

  • Schomburg FM, Bizzell CM, Lee DJ, Zeevaart JA, Amasino RM (2003) Over-expression of a novel class of gibberellin 2-oxidases decreases gibberellin levels and creates dwarf plants. Plant Cell 15:151–163

    Article  PubMed  CAS  Google Scholar 

  • Silverstone AL, Junga HS, Dilla A, Kawaideb H, Kamiyab YJ, Sun TP (2001) Repressing a repressor: gibberellin-induced rapid reduction of the RGA protein in Arabidopsis. Plant Cell 13:1555–1566

    Article  PubMed  CAS  Google Scholar 

  • Singh DP, Jermakow AM, Swain SM (2002) Gibberellins are required for seed development and pollen tube growth in Arabidopsis. Plant Cell 14:3133–3147

    Article  PubMed  CAS  Google Scholar 

  • Spielmeyer W, Ellis MH, Chandler PM (2002) Semidwarf (sd-1), “green revolution” rice, contains a defective gibberellin 20-oxidase gene. Proc Natl Acad Sci USA 99:9043–9048

    Article  PubMed  CAS  Google Scholar 

  • Stafford HA (1990) Flavonoid metabolism. CRC Press, Boca Raton, FL

    Google Scholar 

  • Sun TP, Gubler F (2004) Molecular mechanism of gibberellin signaling in plants. Annu Rev Plant Biol 55:197–223

    Article  PubMed  CAS  Google Scholar 

  • Talon M, Zeevaart JA (1990) Gibberellins and stem growth as related to photoperiod in Silene armeria L.Plant Physiol 92:1094–1100

    Google Scholar 

  • Thomas SG, Phillips AL, Hedden P (1998) Molecular cloning and functional expression of gibberellin 2-oxidases, multifunctional enzymes involved in gibberellin deactivation. Proc Natl Acad Sci USA 96:4698–4703

    Article  Google Scholar 

  • VanderValk P, Proveniers MCG, Pertijs JH et al (2004) Late heading of perennial ryegrass caused by introducing an Arabidopsis homeobox gene. Plant Breed 123:531–535

    Article  CAS  Google Scholar 

  • Wang Y, Li J (2005) The plant architecture of rice (Oryza sativa). Plant Mol Biol 59:75–84

    Article  PubMed  CAS  Google Scholar 

  • Whitehead TP, Thorpe GHG, Carter TJN et al (1983) Enhanced luminescence procedure for sensitive determination of peroxidase-labelled conjugates in immunoassay. Nature 305:158–159

    Article  CAS  Google Scholar 

  • Yang J, Zhang J, Wang Z, Zhu Q, Wang W (2001) Hormonal changes in the grains of rice subjected to water stress during grain filling. Plant Physiol 127:315–323

    Google Scholar 

  • Zanewich KP, Rood SB, Southworth CE, Williams PH (1991) Dwarf mutants of brassica: responses to applied gibberellins and gibberell in content. J Plant Growth Regul 10:121–127

    Article  CAS  Google Scholar 

  • Zeevaart JA, Gage DA, Talon M (1993) Gibberellin A1 is required for stem elongation in spinach. Proc Natl Acad Sci USA 90:7401–7405

    Google Scholar 

Download references

Acknowledgments

This work was funded by the National 863 Plan of China (2007AA10Z127) and the National Natural Science Foundation of China (30800080).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xiaoying Zhao or Xuanming Liu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhou, B., Lin, J., Peng, W. et al. Dwarfism in Brassica napus L. induced by the over-expression of a gibberellin 2-oxidase gene from Arabidopsis thaliana . Mol Breeding 29, 115–127 (2012). https://doi.org/10.1007/s11032-010-9530-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11032-010-9530-1

Keywords

Navigation