Skip to main content
Log in

QTL mapping of multiple foliar disease and root-lesion nematode resistances in wheat

  • Published:
Molecular Breeding Aims and scope Submit manuscript

Abstract

A genetic linkage map, based on a cross between the synthetic hexaploid CPI133872 and the bread wheat cultivar Janz, was established using 111 F1-derived doubled haploid lines. The population was phenotyped in multiple years and/or locations for seven disease resistance traits, namely, Septoria tritici blotch (Mycosphaeralla graminicola), yellow leaf spot also known as tan spot (Pyrenophora tritici-repentis), stripe rust (Puccinia striiformis f. sp. tritici), leaf rust (Puccinia triticina), stem rust (Puccinia graminis f. sp. tritici) and two species of root-lesion nematode (Pratylenchyus thornei and P. neglectus). The DH population was also scored for coleoptile colour and the presence of the seedling leaf rust resistance gene Lr24. Implementation of a multiple-QTL model identified a tightly linked cluster of foliar disease resistance QTL in chromosome 3DL. Major QTL each for resistance to Septoria tritici blotch and yellow leaf spot were contributed by the synthetic hexaploid parent CPI133872 and linked in repulsion with the coincident Lr24/Sr24 locus carried by parent Janz. This is the first report of linked QTL for Septoria tritici blotch and yellow leaf spot contributed by the same parent. Additional QTL for yellow leaf spot were detected in 5AS and 5BL. Consistent QTL for stripe rust resistance were identified in chromosomes 1BL, 4BL and 7DS, with the QTL in 7DS corresponding to the Yr18/Lr34 region. Three major QTL for P. thornei resistance (2BS, 6DS, 6DL) and two for P. neglectus resistance (2BS, 6DS) were detected. The recombinants combining resistance to Septoria tritici blotch, yellow leaf spot, rust diseases and root-lesion nematodes from parents CPI133872 and Janz constitute valuable germplasm for the transfer of multiple disease resistance into new wheat cultivars.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Akbari M, Wenzl P, Caig V, Carlig J, Xia L, Yang S, Uszynski G, Mohler V, Lehmensiek A, Kuchel H, Hayden MJ, Howes N, Sharp P, Vaughan P, Rathmell B, Huttner E, Kilian A (2006) Diversity arrays technology (DArT) for high-throughput profiling of the hexaploid wheat genome. Theor Appl Genet 113:1409–1420. doi:10.1007/s00122-006-0365-4

    Article  CAS  PubMed  Google Scholar 

  • Arraiano LS, Worland AJ, Ellerbrook C, Brown JKM (2001) Chromosomal location of a gene for resistance to septoria tritici blotch (Mycosphaerella graminicola) in the hexaploid wheat ‘Synthetic 6x’. Theor Appl Genet 103:758–764. doi:10.1007/s001220100668

    Article  CAS  Google Scholar 

  • Assefa S, Fehrmann H (2000) Resistance to wheat leaf rust in Aegilops tauschii Coss. and inheritance of resistance in hexaploid wheat. Genet Resour Crop Evol 47:135–140. doi:10.1023/A:1008770226330

    Article  Google Scholar 

  • Ballantyne BJ (1983) Resistance to speckled leaf blotch of wheat in southern New South Wales. In: Scharen AL (ed) Septoria of cereals: workshop proceedings. Montana State University, Bozeman, pp 31–32

    Google Scholar 

  • Bariana HS, Hayden MJ, Ahmed NU, Bell JA, Sharp PJ, McIntosh RA (2001) Mapping of durable adult plant and seedling resistances to stripe rust and stem rust diseases in wheat. Aust J Agric Res 52:1247–1255. doi:10.1071/AR01040

    Article  CAS  Google Scholar 

  • Bariana HS, Miah H, Brown GN, Willey N, Lehmensiek A (2007) Molecular mapping of durable rust resistance in wheat and its implication in breeding. In: Buck HT, Nisi JE, Salomón N (eds) Wheat production in stressed environments. Springer, Dordrecht, pp 723–728

    Chapter  Google Scholar 

  • Brading PA, Verstappen ECP, Kema GHJ, Brown JKM (2002) A gene-for-gene relationship between wheat and Mycosphaerella graminicola, the Septoria tritici blotch pathogen. Phytopathology 92:439–445. doi:10.1094/PHYTO.2002.92.4.439

    Article  PubMed  Google Scholar 

  • Cheong J, Wallwork H, Williams KJ (2004) Identification of a major QTL for yellow leaf spot resistance in the wheat varieties Brookton and Cranbrook. Aust J Agric Res 55:315–319. doi:10.1071/AR03140

    Article  Google Scholar 

  • Chu C-G, Friesen TL, Xu SS, Faris JD (2008) Identification of novel tan spot resistance loci beyond the known host-selective toxin insensitivity genes in wheat. Theor Appl Genet 117:873–881. doi:10.1007/s00122-008-0826-z

    Article  CAS  PubMed  Google Scholar 

  • Churchill GA, Doerge RW (1994) Empirical threshold values for quantitative trait mapping. Genetics 138:963–971

    CAS  PubMed  Google Scholar 

  • Crossa J, Burgueño J, Dreisigacker S, Vargas M, Herrera-Foessel SA, Lillemo M, Singh RP, Trethowan R, Warburton M, Franco J, Reynolds M, Crouch JH, Ortiz R (2007) Association analysis of historical bread wheat germplasm using additive genetic covariance of relatives and popular structure. Genetics 177:1889–1913. doi:10.1534/genetics.107.078659

    Article  CAS  PubMed  Google Scholar 

  • Dedryver F, Jubier MF, Thouvenin J, Goyeau J, Goyeau H (1996) Molecular markers linked to the leaf rust resistance gene Lr24 in different wheat cultivars. Genome 39:830–835. doi:10.1139/g96-105

    Article  CAS  PubMed  Google Scholar 

  • Dilbirligi M, Erayman M, Sandu D, Sidhu D, Gill KS (2004) Identification of wheat chromosomal regions containing expressed resistance genes. Genetics 166:461–481

    Article  CAS  PubMed  Google Scholar 

  • Eastwood RF, Lagudah ES, Appels R, Hannah M, Kollmorgen JF (1991) Triticum tauschii: a novel source of resistance to cereal cyst nematode (Heterodera avenae). Aust J Agric Res 42:69–77. doi:10.1071/AR9910069

    Google Scholar 

  • Faris JD, Friesen TL (2005) Identification of quantitative trait loci for race-nonspecific resistance to tan spot in wheat. Theor Appl Genet 111:386–392. doi:10.1007/s00122-005-2033-5

    Article  CAS  PubMed  Google Scholar 

  • Faris JD, Anderson TA, Francl LJ, Jordahl JG (1996) Chromosomal location of a gene conditioning insensitivity in wheat to a necrosis-inducing culture filtrate from Pyrenophora tritici-repentis. Phytopathology 86:459–463. doi:10.1094/Phyto-86-459

    Article  CAS  Google Scholar 

  • Francki MG, Walker E, Crawford AC, Broughton S, Ohm HW, Barclay I, Wilson RE, McLean R (2009) Comparison of genetic and sytogentic maps of hexaploid wheat (Triticum aestivum L.) using SSR and DArT markers. Mol Genet Genomics 28:181–191. doi:10;1007/s00438-008-0403-9

    Article  CAS  Google Scholar 

  • Friesen TL, Faris JD (2004) Molecular mapping of resistance to Pyrenophora tritici-repentis race 5 and sensitivity to Ptr ToxB in wheat. Theor Appl Genet 109:464–471. doi:10.1007/s00122-004-1678-9

    Article  CAS  PubMed  Google Scholar 

  • Friesen TL, Xu SS, Harris MO (2008) Stem rust, tan spot, Stagonospora nodurum blotch, and hessian fly resistance in Langdon durum-Aegilops tauschii synthetic hexaploid wheat lines. Crop Sci 48:1062–1070. doi:10.2135/cropsci2007.08.0463

    Article  Google Scholar 

  • Gupta PK, Balyan HS, Edwards K, Isaac P, Korzun V, Röder M, Gautier M-F, Joudrier P, Schlatter AR, Dubcovsky J, De la Pena RC, Khairallah M, Penner G, Hayden HJ, Sharp P, Keller B, Wang RCC, Hardouin JP, Jack P, Leroy P (2002) Genetic mapping of 66 new microsatellite (SSR) loci in bread wheat. Theor Appl Genet 105:413–422. doi:10.1007/s00122-002-0865-9

    Article  CAS  PubMed  Google Scholar 

  • Gupta SK, Charpe A, Koul S, Haque QMR, Prabhu KV (2006) Development and validation of SCAR markers co-segregating with an Agropyron elongatum derived leaf rust resistance gene Lr24 in wheat. Euphytica 150:233–240. doi:10.1007/s10681-006-9113-8

    Article  CAS  Google Scholar 

  • Hatchett JH, Martin TJ, Livers RW (1981) Expression and inheritance of resistance to Hessian fly in synthetic hexaploid wheats derived from Triticum tauschii (Coss) Schmal. Crop Sci 21:731–734

    Google Scholar 

  • Kammholz SJ, Campbell AW, Sutherland MW, Hollamby GJ, Martin PJ, Eastwood RF, Barclay I, Wilson RE, Brennan PS, Sheppard JA (2001) Establishment and characterisation of wheat genetic mapping populations. Aust J Agric Res 52:1079–1088. doi:10.1071/AR01043

    Article  CAS  Google Scholar 

  • Kolmer JA, Singh RP, Garvin DF, Viccars L, William HM, Huerta-Espino J, Ogbonnaya FC, Raman H, Orford S, Bariana HS, Lagudah E (2008) Analysis of the Lr34/Yr18 rust resistance region in wheat germplasm. Crop Sci 48:1841–1852

    Article  CAS  Google Scholar 

  • Kosambi DD (1944) The estimation of map distances from recombination values. Ann Eugenic 12:172–175

    Google Scholar 

  • Lamari L, Bernier CC (1989) Toxin of Pyrenophora tritici-repentis: host-specificity, significance in disease, and inheritance of host reaction. Phytopathology 79:740–744. doi:10.1094/Phyto-79-740

    Article  CAS  Google Scholar 

  • Liu ZH, Friesen TL, Ling H, Meinhardt SW, Oliver RP, Rasmussen JB, Faris JD (2006) The Tsn1-ToxA interaction in the wheat-Stagonospora nodorum pathosystem parallels that of the wheat-tan spot system. Genome 49:1265–1273. doi:10.1139/G06-088

    Article  CAS  PubMed  Google Scholar 

  • Loughman R, Lagudah ES, Trottet M, Wilson RE, Mathews A (2001) Septoria nodorum blotch resistance in Aegilops tauschii and its expression in synthetic amphiploids. Aust J Agric Res 52:1393–1402. doi:10.1071/AR01034

    Article  Google Scholar 

  • Lu H-J, Fellers JP, Friesen TL, Meinhardt SW, Faris JD (2006) Genomic analysis and marker development for the Tsn1 locus in wheat using bin-mapped ESTs and flanking BAC contigs. Theor Appl Genet 112:1132–1142. doi:10.1007/s00122-006-0215-4

    Article  CAS  PubMed  Google Scholar 

  • Lutz J, Hsam SLK, Limpert E, Zeller FJ (1994) Powdery mildew resistance in Aegilops tauschii Coss. and synthetic hexaploid wheats. Genet Resour Crop Evol 41:151–158. doi:10.1007/BF00051631

    Article  Google Scholar 

  • Ma H, Singh RP, Mujeeb-Kazi A (1995) Resistance to stripe rust in Triticum turgidum, T. tauschii and their synthetic hexaploids. Euphytica 82:117–124. doi:10.1007/BF00027057

    Article  Google Scholar 

  • Mago R, Bariana HS, Dundas LS, Spielmeyer W, Lawrence GJ, Pryor AJ, Ellis JG (2005) Development of PCR markers for the selection of wheat stem rust resistance genes Sr24 and Sr26 in diverse wheat germplasm. Theor Appl Genet 111:496–504. doi:10.1007/s00122-005-2039-z

    Article  CAS  PubMed  Google Scholar 

  • Marais GF, Potgieter GF, Roux HS (1994) An assessment of the variation for stem rust resistance in the progeny of a cross involving the Triticum species aestivum, turgidum and tauschii. S Afr J Plant Soil 11:15–19

    Google Scholar 

  • McIntosh RA, Wellings CF, Park RF (1995) Wheat rusts: an atlas of resistance genes. CSIRO Publishing, Melbourne

    Google Scholar 

  • McIntosh RA, Yamazaki Y, Devos KM, Dubcovsky J, Rogers WJ, Appels R (2003) Catalogue of gene symbols for wheat. In: Pogna NE, Romano M, Pogna A, Galterio G (eds) Proceedings of the 10th International Wheat Genetics Symposium, Vol. 4. Instituto Sperimentale per la Cerealicoltura, Rome, pp 1–34

  • Mujeeb-Kazi A, Cano S, Rosas V, Cortes A, Delgado R (2001a) Registration of five synthetic hexaploid wheat and seven bread wheat lines resistant to wheat spot blotch. Crop Sci 41:1653–1654

    Article  Google Scholar 

  • Mujeeb-Kazi A, Delgado R, Juárez L, Cano S (2001b) Scab resistance (Type II: spread) in synthetic hexaploid germplasm. Ann Wheat Newsl 47:118–120

    Google Scholar 

  • Murray GM, Brennan JP (2009) The current and potential costs from diseases of wheat in Australia. Grains Research and Development Corporation, Barton

    Google Scholar 

  • Navabi A, Tewari JP, Singh RP, McCallum B, Laroche A, Briggs KG (2005) Inheritance and QTL analysis of durable resistance to stripe and leaf rusts in an Australian cultivar, Triticum aestivum ‘Cook’. Genome 48:97–107. doi:10.1139/g04-100

    Article  CAS  PubMed  Google Scholar 

  • Nelson JC, Sorrells ME, Van Deynze AE, Lu YH, Atkinson M, Bernard M, Leroy P, Faris JD, Anderson JA (1995) Molecular mapping of wheat: Major genes and rearrangements in homoeologous groups 4, 5, and 7. Genetics 141:721–731

    CAS  PubMed  Google Scholar 

  • Ogbonnaya FC, Imtiaz M, Bariana HS, McLean M, Shankar MM, Hollaway GJ, Trethowan RM, Lagudah ES, van Ginkel M (2008) Mining synthetic hexaploids for multiple disease resistance to improve bread wheat. Aust J Agric Res 59:421–431. doi:10.1071/AR07227

    Article  Google Scholar 

  • Palmer C-L, Skinner W (2002) Mycosphaerella graminicola: latent infection, crop devastation and genomics. Mol Plant Pathol 3:63–70. doi:10.1046/j.1464-6722.2002.00100.x

    Article  CAS  PubMed  Google Scholar 

  • Park RF, Bariana HS, Wallwork H, Wellings CR (2002) Detection of virulence for leaf rust resistance gene Lr24 in Australia. Aust J Agric Res 53:1069–1076. doi:10.1071/AR02018

    Article  CAS  Google Scholar 

  • Payne RW, Murray DA, Harding SA, Baird DB, Soutar DM (2007) GenStat for windows, 10th edn. VSN International, Hemel Hempstead

    Google Scholar 

  • Raman R, Milgate AW, Imtiaz M, Tan M-K, Raman H, Lisle C, Coombes N, Martin P (2009) Molecular mapping and physical location of major gene conferring seedling resistance to Septoria tritici blotch in wheat. Mol Breed 24:153–164. doi:10.1007/s11032-009-9280-0

    Article  CAS  Google Scholar 

  • Rees RG, Platz GJ (1990) Sources of Pyrenophora tritici-repentis in bread wheats. Euphytica 45:59–69. doi:10.1007/BF00032151

    Google Scholar 

  • Schmidt AL, McIntyre CL, Thompson JP, Seymour NP, Liu CJ (2005) Quantitative trait loci for root-lesion nematode (Pratylenchus thornei) resistance in Middle-Eastern landraces and their potential for introgression into Australian bread wheat. Aust J Agric Res 56:1059–1068. doi:10.1071/AR05016

    Article  CAS  Google Scholar 

  • Shetty NP, Kristensen BK, Newman M-A, Møller K, Gregersen PL, Jørgensen HJL (2003) Association of hydrogen peroxide with restriction of Septoria tritici in resistant wheat. Physiol Mol Plant Pathol 62:333–346. doi:10.1016/s0885-5765(03)00079-1

    Article  CAS  Google Scholar 

  • Siedler H, Obst A, Hsam SLK, Zeller FJ (1994) Evaluation for resistance to Pyrenophora tritici-repentis in Aegilops tauschii Coss. and synthetic hexaploid amphiploids. Genet Resour Crop Evol 41:27–34. doi:10.1007/BF00051420

    Article  Google Scholar 

  • Simón MR, Ayala FM, Cordo CA, Röder MS, Börner A (2004) Molecular mapping of quantitative trait loci determining resistance to septoria tritici blotch caused by Mycosphaerella graminicola in wheat. Euphytica 138:41–48. doi:10.1023/B:EUPH.0000047059.57839.98

    Article  Google Scholar 

  • Somers DJ, Isacc P, Edwards K (2004) A high density microsatellite consensus map for bread wheat (Triticum aestivum L.). Theor Appl Genet 109:1105–1114. doi:10.1007/s00122-004-1740-7

    Article  CAS  PubMed  Google Scholar 

  • Tadesse W, Hsam SLK, Zeller FJ (2006) Evaluation of common wheat cultivars for tan spot resistance and chromosomal location of a resistance gene in the cultivar ‘Salamouni’. Plant Breed 125:318–322. doi:10.1111/j.1439-0523.2006.01243.x

    Article  Google Scholar 

  • Tadesse W, Schmolke M, Hsam SLK, Mohler V, Wenzel G, Zeller FJ (2007) Molecular mapping of resistance genes to tan spot (Pyrenophora tritici-repentis race 1) in synthetic wheat lines. Theor Appl Genet 114:855–862. doi:10.1007/s00122-006-0484-y

    Article  CAS  PubMed  Google Scholar 

  • Thompson JP (2008) Resistance to root-lesion nematodes (Pratylenchus thornei and P. neglectus) in synthetic hexpaloid wheats and their durum and Aegilops tauschii parents. Aust J Agric Res 59:432–446. doi:10.1071/AR07222

    Article  Google Scholar 

  • Thompson JP, Brennan PS, Clewett TG, Sheedy JG, Seymour NP (1999) Progress in breeding wheat for tolerance and resistance to root-lesion nematode (Pratylenchus thornei). Australas Plant Pathol 28:45–52. doi:10.1071/AP99006

    Article  Google Scholar 

  • Toktay H, McIntyre CL, Nicol JM, Ozkan H, Elekcioglu H (2006) Identification of common root-lesion nematode (Pratylenchus thornei Sher and Allen) loci in bread wheat. Genome 49:1319–1323. doi:10.1139/G06-090

    Article  CAS  PubMed  Google Scholar 

  • Van Ooijen JW (1992) Accuracy of mapping quantitative trait loci in autogamous species. Theor Appl Genet 84:803–811. doi:10.1007/BF00227388

    Article  Google Scholar 

  • Van Ooijen JW, Voorrips RE (2001) JoinMap version 3.0: software for the calculation of genetic linkage maps. Plant Research International, Wagneningen

    Google Scholar 

  • Van Ooijen JW, Boer MP, Jansen RC, Maliepaard C (2002) MapQTL 4.0, software for the calculation of QTL positions on genetic maps. Plant Research International, Wagneningen

    Google Scholar 

  • Villareal RL, Mujeeb-Kazi A, Fuentes-Davila G, Rajaram S, Del Toro E (1994) Resistance to karnal bunt (Tilletia indica Mitra) in synthetic hexaploid wheats derived from Triticum turgidum x T. tauschii. Plant Breed 112:63–69. doi:10.1111/j.1439-0523.1994.tb01277.x

    Article  Google Scholar 

  • Voorrips RE (2002) MapChart: Software for the graphical presentation of linkage maps and QTLs. J Hered 93:77–78. doi:10.1093/jhered/93.1.77

    Article  CAS  PubMed  Google Scholar 

  • William M, Singh RP, Huerta-Espino J, Palacios G, Suenaga K (2006) Characterization of genetic loci conferring adult plant resistance to leaf rust and stripe rust in spring wheat. Genome 49:977–990. doi:10.1139/G06-052

    Article  CAS  PubMed  Google Scholar 

  • Xue S, Zhang Z, Lin F, Kong Z, Cao Y, Yi H, Mei M, Zhu H, Wu J, Xu H, Zhao D, Tian D, Zhang C, Ma Z (2008) A high density intervarietal map of the wheat genome enriched with markers derived from expressed sequence tags. Theor Appl Genet 117:181–189. doi:10.1007/s00122-008-0764-9

    Article  CAS  PubMed  Google Scholar 

  • Zwart RS, Thompson JP, Godwin ID (2005) Identification of quantitative trait loci for resistance to two species of root-lesion nematode (Pratylenchus thornei and P. neglectus). Aust J Agric Res 56:345–352. doi:10.1071/AR04223

    Article  CAS  Google Scholar 

  • Zwart RS, Thompson JP, Sheedy JG, Nelson JC (2006) Mapping quantitative trait loci for resistance to Pratylenchus thornei from synthetic hexaploid wheat in the International Triticeae Mapping Inititative (ITMI) population. Aust J Agric Res 57:525–530. doi:10.1071/AR05177

    Article  Google Scholar 

Download references

Acknowledgments

We thank Peter Horne, Tony Done and Shirley Jones for assistance in phenotyping for yellow leaf spot, Michael Osborne for genotyping additional SSR markers and David Butler for statistical support. This research was funded by the Grains Research and Development Corporation, Australia, Queensland Primary Industries and Fisheries and the New South Wales Department of Primary Industries.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. S. Zwart.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zwart, R.S., Thompson, J.P., Milgate, A.W. et al. QTL mapping of multiple foliar disease and root-lesion nematode resistances in wheat. Mol Breeding 26, 107–124 (2010). https://doi.org/10.1007/s11032-009-9381-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11032-009-9381-9

Keywords

Navigation