Skip to main content
Log in

Expression of Arabidopsis NDPK2 increases antioxidant enzyme activities and enhances tolerance to multiple environmental stresses in transgenic sweetpotato plants

  • Published:
Molecular Breeding Aims and scope Submit manuscript

Abstract

Transgenic sweetpotato (Ipomoea batatas L. cv. Yulmi) plants expressing the Arabidopsis nucleoside diphosphate kinase 2 (AtNDPK2) gene under the control of an oxidative stress–inducible peroxidase (SWPA2) promoter (referred to as SN plants) were developed and evaluated for enhanced tolerance of SN plants under various abiotic stress conditions. The level of AtNDPK2 expression and NDPK activity in SN plants following methyl viologen (MV) treatment was positively correlated with the plant’s tolerance to MV. Interestingly, we observed that antioxidant enzyme activities such as peroxidase, ascorbate peroxidase, and catalase increased in MV-treated SN plants. In addition, SN plants showed enhanced tolerance to cold, high salinity, and drought stresses by an increase in the activity of H2O2 scavenging enzymes. These results indicate that overexpression of AtNDPK2 in sweetpotato might efficiently modulate oxidative stress from various environmental stresses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

APX:

Ascorbate peroxidase

CAT:

Catalase

Chl:

Chlorophyll

DAB:

3,3-Diaminobenzidine

MV:

Methyl viologen

NDPK:

Nucleoside diphosphate kinase

NT:

Non-transgenic

POD:

Peroxidase

ROS:

Reactive oxygen species

RWC:

Relative water content

References

  • Aebi H (1984) Catalase in vitro. Methods Enzymol 105:121–126. doi:10.1016/S0076-6879(84)05016-3

    Article  PubMed  CAS  Google Scholar 

  • Asada K (1999) The water–water cycle in chloroplasts: scavenging of active oxygens and dissipation of excess photons. Annu Rev Plant Physiol Plant Mol Biol 50:601–639. doi:10.1146/annurev.arplant.50.1.601

    Article  PubMed  CAS  Google Scholar 

  • Babbs CF, Pham JA, Coolbaugh RC (1989) Lethal hydroxyl radical production in paraquat-treated plants. Plant Physiol 90:1267–1270. doi:10.1104/pp.90.4.1267

    Article  PubMed  CAS  Google Scholar 

  • Bartels D, Sunkar R (2005) Drought and salt tolerance in plants. Crit Rev Plant Sci 24:23–58. doi:10.1080/07352680590910410

    Article  CAS  Google Scholar 

  • Bindschedler LV, Minibayeva F, Gardner SL, Gerrish C, Davies DR, Bolwell GP (2001) Early signaling events in the apoplastic oxidative burst in suspension cultured French bean cells involved cAMP and Ca2+. New Phytol 151:185–194. doi:10.1046/j.1469-8137.2001.00170.x

    Article  CAS  Google Scholar 

  • Bowler C, Slooten L, Vandenbranden S, De Rycke R, Botterman J, Sybesma C, Van Montagu M, Inze D (1991) Manganese superoxide dismutase can reduce cellular damage mediated by oxygen radicals in transgenic plants. EMBO J 10:1723–1732

    PubMed  CAS  Google Scholar 

  • Boyer JS (1982) Plant productivity and environment. Science 218:443–448. doi:10.1126/science.218.4571.443

    Article  PubMed  CAS  Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254. doi:10.1016/0003-2697(76)90527-3

    Article  PubMed  CAS  Google Scholar 

  • Choi G, Yi H, Lee J, Kwon YK, Soh MS, Shin B, Luka Z, Hahn TR, Song PS (1999) Phytochrome signalling is mediated through nucleoside diphosphate kinase 2. Nature 401:610–613. doi:10.1038/44176

    Article  PubMed  CAS  Google Scholar 

  • Dat J, Vandenabeele S, Vranova E, Van Montagu M, Inze D, Van Breusegem F (2000) Dual action of the active oxygen species during plant stress responses. Cell Mol Life Sci 57:779–795. doi:10.1007/s000180050041

    Article  PubMed  CAS  Google Scholar 

  • Escobar Galvis ML, Marttila S, Hakansson G, Forsberg J, Knorpp C (2001) Heat stress response in pea involves interaction of mitochondrial nucleoside diphosphate kinase with a novel 86-kilodalton protein. Plant Physiol 126:69–77. doi:10.1104/pp.126.1.69

    Article  PubMed  CAS  Google Scholar 

  • Fadzillah NM, Gill V, Finch RP, Burdon RH (1996) Chilling, oxidative stress and antioxidant responses in shoot cultures of rice. Planta 199:552–556. doi:10.1007/BF00195186

    Article  CAS  Google Scholar 

  • Foyer CH, Descourvierse P, Kunert KJ (1994) Protection against oxygen radicals: an important defense mechanism studied in transgenic plants. Plant Cell Environ 17:507–523. doi:10.1111/j.1365-3040.1994.tb00146.x

    Article  CAS  Google Scholar 

  • Kim SH, Hamada T (2005) Rapid and reliable method of extracting DNA and RNA from sweetpotato, Ipomoea batatas (L.) Lam. Biotechnol Lett 27:1841–1845. doi:10.1007/s10529-005-3891-2

    Article  PubMed  CAS  Google Scholar 

  • Kim KY, Kwon SY, Lee HS, Hur Y, Bang JW, Kwak SS (2003) A novel oxidative stress–inducible peroxidase promoter from sweetpotato: molecular cloning and characterization in transgenic tobacco plants and cultured cells. Plant Mol Biol 51:831–838. doi:10.1023/A:1023045218815

    Article  PubMed  CAS  Google Scholar 

  • Kingston-Smith AH, Harbinson J, Foyer CH (1999) Acclimation of photosynthesis, H2O2 content and antioxidants in maize (Zea mays) grown at sub-optimal temperatures. Plant Cell Environ 22:1071–1083. doi:10.1046/j.1365-3040.1999.00469.x

    Article  CAS  Google Scholar 

  • Kobayashi Y, Yamamoto S, Minami H, Kagaya Y, Hattori T (2004) Differential activation of the rice sucrose non-fermenting 1-related protein kinase2 family by hyperosmotic stress and abscisic acid. Plant Cell 16:1163–1177. doi:10.1105/tpc.019943

    Article  PubMed  CAS  Google Scholar 

  • Kwak SS, Kim SK, Lee MS, Jung KH, Park IH, Liu JR (1995) Acidic peroxidase from suspension cultures of sweet potato. Phytochemistry 39:981–984. doi:10.1016/0031-9422(95)00098-R

    Article  CAS  Google Scholar 

  • Kwon EJ, Kwon SY, Kim MZ, Lee JS, Ahn YS, Jeong BC, Kwak SS, Lee HS (2002) Plant regeneration of major cultivars of sweetpotato (Ipomoea batatas) in Korea via somatic embryogenesis. Kor J Plant Biotechnol 29:189–192

    Google Scholar 

  • Lee SH, Ahsan N, Lee KW, Kim DH, Lee DG, Kwak SS, Kwon SY, Kim TH, Lee BH (2007) Simultaneous overexpression of both CuZn superoxide dismutase and ascorbate peroxidase in transgenic tall fescue plants confers increased tolerance to a wide range of abiotic stresses. J Plant Physiol 164:1626–1638. doi:10.1016/j.jplph.2007.01.003

    Article  PubMed  CAS  Google Scholar 

  • Lim S, Yang KS, Kwon SY, Paek KY, Kwak SS, Lee HS (2004) Agrobacterium-mediated genetic transformation and plant regeneration of sweetpotato (Ipomoea batatas). Kor J Plant Biotechnol 31:267–271

    Article  Google Scholar 

  • Lim S, Kim YH, Kim SH, Kwon SY, Lee HS, Kim JG, Cho CY, Paek KY, Kwak SS (2007) Enhanced tolerance of transgenic sweetpotato plants expressing both superoxide dismutase and ascorbate peroxidase in chloroplasts against methyl viologen-mediated oxidative stress. Mol Breeding 19:227–239. doi:10.1007/s11032-006-9051-0

    Article  CAS  Google Scholar 

  • Ma QQ, Wang W, Li YH, Li DQ, Zou Q (2006) Alleviation of photoinhibition in drought-stressed wheat (Triticum aestivum) by foliar-applied glycine betaine. J Plant Physiol 163:165–175. doi:10.1016/j.jplph.2005.04.023

    Article  PubMed  CAS  Google Scholar 

  • Mahajan S, Tuteja N (2005) Cold, salinity and drought stresses: an overview. Arch Biochem Biophys 444:139–158. doi:10.1016/j.abb.2005.10.018

    Article  PubMed  CAS  Google Scholar 

  • Mittler R (2002) Oxidative stress, antioxidants and stress tolerance. Trends Plant Sci 7:405–410. doi:10.1016/S1360-1385(02)02312-9

    Article  PubMed  CAS  Google Scholar 

  • Moon H, Lee B, Choi G, Shin D, Prasad DT, Lee O, Kwak SS, Kim DH, Nam J, Bahk J, Hong JC, Lee SY, Cho MJ, Lim CO, Yun DJ (2003) NDP kinase 2 interacts with two oxidative stress-activated MAPKs to regulate cellular redox state and enhances multiple stress tolerance in transgenic plants. Proc Natl Acad Sci USA 100:358–363. doi:10.1073/pnas.252641899

    Article  PubMed  CAS  Google Scholar 

  • Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassay with tobacco tissue cultures. Physiol Plant 15:473–497. doi:10.1111/j.1399-3054.1962.tb08052.x

    Article  CAS  Google Scholar 

  • Nakano Y, Asada K (1981) Hydrogen peroxide is scavenged by ascorbate-specific peroxidase in spinach chloroplasts. Plant Cell Physiol 22:867–880

    CAS  Google Scholar 

  • O’Kane D, Gill V, Boyd P, Burdon R (1996) Chilling, oxidative stress and antioxidant responses in Arabidopsis thaliana callus. Planta 198:371–377. doi:10.1007/BF00620053

    Article  PubMed  Google Scholar 

  • Okuda T, Matsuda Y, Yamanaka A, Sagisaka S (1991) Abrupt increase in the level of hydrogen peroxide in leaves of winter wheat is caused by cold treatment. Plant Physiol 97:1265–1267. doi:10.1104/pp.97.3.1265

    Article  PubMed  CAS  Google Scholar 

  • Passardi F, Cosio C, Penel C, Dunand C (2005) Peroxidases have more functions than a Swiss army knife. Plant Cell Rep 24:255–265. doi:10.1007/s00299-005-0972-6

    Article  PubMed  CAS  Google Scholar 

  • Porra RJ, Thompson WA, Kriedemann PE (1989) Determination of accurate extinction coefficients and simultaneous equations for assaying chlorophyll a and b extracted with four different solvents: verification of the concentration of chlorophyll standards by atomic absorption spectroscopy. Biochim Biophys Acta 975:384–394. doi:10.1016/S0005-2728(89)80347-0

    Article  CAS  Google Scholar 

  • Prakash CS (1994) Sweet potato biotechnology: progress and potential. Biotechnol Dev Mon 18:19–22

    Google Scholar 

  • Prasad TK, Anderson MD, Martin BA, Stewart CR (1994) Evidence for chilling-induced oxidative stress in maize seedlings and a regulatory role for hydrogen peroxide. Plant Cell 6:65–74

    Article  PubMed  CAS  Google Scholar 

  • Tang L, Kwon SY, Kim SH, Kim JS, Choi JS, Cho KY, Sung CK, Kwak SS, Lee HS (2006) Enhanced tolerance of transgenic potato plants expressing both superoxide dismutase and ascorbate peroxidase in chloroplasts against oxidative stress and high temperature. Plant Cell Rep 25:1380–1386. doi:10.1007/s00299-006-0199-1

    Article  PubMed  CAS  Google Scholar 

  • Tang L, Kim MD, Yang KS, Kwon SY, Kim SH, Kim JS, Yun DJ, Kwak SS, Lee HS (2008) Enhanced tolerance of transgenic potato plants overexpressing nucleoside diphosphate kinase 2 against multiple environmental stresses. Transgenic Res 17:705–715. doi:10.1007/s11248-007-9155-2

    Article  PubMed  CAS  Google Scholar 

  • Tena G, Asai T, Chiu WL, Sheen J (2001) Plant mitogen-activated protein kinase signaling cascades. Curr Opin Plant Biol 4:392–400. doi:10.1016/S1369-5266(00)00191-6

    Article  PubMed  CAS  Google Scholar 

  • Teow CC, Truong VD, McFeeters RF, Thompson RL, Pecota KV, Yencho GC (2007) Antioxidant activities, phenolic and β-carotene contents of sweet potato genotypes with varying flesh colours. Food Chem 103:829–838. doi:10.1016/j.foodchem.2006.09.033

    Article  CAS  Google Scholar 

  • Thordal-Christensen H, Zhang Z, Wei Y, Collinge DB (1997) Subcellular localization of H2O2 in plants: H2O2 accumulation in papillae and hypersensitive response during the barley–powder mildew interaction. Plant J 11:1187–1194. doi:10.1046/j.1365-313X.1997.11061187.x

    Article  CAS  Google Scholar 

  • Umezawa T, Fujita M, Fujita Y, Yamaguchi-Shinozaki K, Shinozaki K (2006) Engineering drought tolerance in plants: discovering and tailoring genes to unlock the future. Curr Opin Biotechnol 17:1–10. doi:10.1016/j.copbio.2006.01.005

    Article  CAS  Google Scholar 

  • Willekens H, Chamnongpol S, Davey M, Schraudner M, Langebartels C, Van Montagu M, Inze D, Van Camp W (1997) Catalase is a sink for H2O2 and is indispensable for stress defence in C3 plants. EMBO J 16:4806–4816. doi:10.1093/emboj/16.16.4806

    Article  PubMed  CAS  Google Scholar 

  • Yang KA, Moon HJ, Kim GT, Lim CJ, Hong JC, Lim CO, Yun DJ (2003) NDP kinase 2 regulates expression of antioxidant genes in Arabidopsis. Proc Jpn Acad Ser B 79:86–91. doi:10.2183/pjab.79B.86

    Article  CAS  Google Scholar 

  • Yano A, Umeda M, Uchimiya H (1995) Expression of functional proteins of cDNA encoding rice nucleoside diphosphate kinase (NDK) in Escherichia coli and organrelated alteration of NDK activities during rice seed germination (Oryza sativa L.). Plant Mol Biol 27:1053–1058. doi:10.1007/BF00037032

    Article  PubMed  CAS  Google Scholar 

  • Yoshinaga M, Yamakawa O, Nakatani M (1999) Genotypic diversity of anthocyanins content and composition in purple-fleshed sweetpotato. Breeding Sci 49:43–47

    CAS  Google Scholar 

  • Zimmermann S, Baumann A, Jaekel K, Marbach I, Engelberg D, Frohnmeyer H (1999) UV-responsive genes of Arabidopsis revealed by similarity to the Gcn4-mediated UV response in yeast. J Biol Chem 274:17017–17024. doi:10.1074/jbc.274.24.17017

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by grants from the Biogreen21 Program (20070301034015) and the Bioenergy Program (20070201030040), Rural Development Administration, Korea, from the Korea Foundation for International Cooperation of Science and Technology (KICOS), Ministry of Education, Science and Technology (MEST), Korea, from the World Class University Program (R32-10148) supported by MEST, and KRIBB initiative program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sang-Soo Kwak.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kim, YH., Lim, S., Yang, KS. et al. Expression of Arabidopsis NDPK2 increases antioxidant enzyme activities and enhances tolerance to multiple environmental stresses in transgenic sweetpotato plants. Mol Breeding 24, 233–244 (2009). https://doi.org/10.1007/s11032-009-9286-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11032-009-9286-7

Keywords

Navigation