Skip to main content
Log in

Fukuyama reduction, Fukuyama coupling and Fukuyama–Mitsunobu alkylation: recent developments and synthetic applications

  • Comprehensive review
  • Published:
Molecular Diversity Aims and scope Submit manuscript

Abstract

Fukuyama reaction for the synthesis of multifunctional aldehydes, secondary amines and ketones has gained considerable importance in synthetic organic chemistry because of mild reaction conditions. The use of thioesters in both Fukuyama aldehydes and ketones synthesis is highly attractive for organic chemists as they are easily accessible from corresponding carboxylic acids. Fukuyama–Mitsunobu reaction utilizes 2-nitrobenzenesulfonyl (Ns) for the protection/activation/deprotection of primary amines to afford secondary amines in good yields and high enantioselectivities. This review presents recent synthetic developments and applications of Fukuyama reaction for the synthesis of aldehydes, secondary amines and ketones.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Scheme 2
Fig. 2
Scheme 3
Scheme 4
Scheme 5
Scheme 6
Scheme 7
Scheme 8
Scheme 9
Scheme 10
Scheme 11
Scheme 12
Scheme 13
Scheme 14
Scheme 15
Scheme 16
Scheme 17
Scheme 18
Scheme 19
Scheme 20
Scheme 21
Scheme 22
Scheme 23
Scheme 24
Scheme 25
Scheme 26
Scheme 27
Scheme 28
Scheme 29
Scheme 30
Fig. 3
Scheme 31
Scheme 32
Scheme 33
Scheme 34
Scheme 35
Scheme 36
Scheme 37
Scheme 38
Scheme 39
Scheme 40
Scheme 41
Scheme 42
Scheme 43
Scheme 44
Scheme 45
Scheme 46
Scheme 47
Scheme 48
Scheme 49
Scheme 50
Scheme 51
Scheme 52
Scheme 53
Scheme 54
Scheme 55
Scheme 56
Scheme 57
Scheme 58
Fig. 4
Scheme 59
Scheme 60
Scheme 61
Scheme 62
Scheme 63

Similar content being viewed by others

References

  1. Brown HC, Cha JS, Nazer B, Yoon NM (1984) Exceptionally facile reduction of acyclic and alicyclic carboxylic acids to aldehydes by thexylchloroborane-dimethyl sulfide. J Am Chem Soc 106:8001–8002. https://doi.org/10.1021/ja00337a075

    Article  CAS  Google Scholar 

  2. Fukuyama T, Tokuyama H (2004) Palladium-mediated synthesis of aldehydes and ketones from thiol esters. Aldrichim Acta 37:87–96. https://doi.org/10.1002/chin.200526228

    Article  CAS  Google Scholar 

  3. Corriu RP, Lanneau GF, Perrot M (1987) The one-pot conversion of carboxylic acids to aldehydes via activated silyl carboxylates. Tetrahedron Lett 28:3941–3944. https://doi.org/10.1016/S0040-4039(00)96426-8

    Article  CAS  Google Scholar 

  4. Fujisawa T, Mori T, Tsuge S, Sato T (1983) Direct and chemoselective conversion of carboxylic acids into aldehydes. Tetrahedron Lett 24:1543–1546. https://doi.org/10.1016/S0040-4039(00)81704-9

    Article  CAS  Google Scholar 

  5. Kangani CO, Kelley DE, Day BW (2006) One-pot synthesis of aldehydes or ketones from carboxylic acids via in situ generation of Weinreb amides using the Deoxo-Fluor reagent. Tetrahedron Lett 47:6289–6292. https://doi.org/10.1016/j.tetlet.2006.06.121

    Article  CAS  Google Scholar 

  6. Fukuyama T, Lin SC, Li L (1990) Facile reduction of ethyl thiol esters to aldehydes: application to a total synthesis of (+)-neothramycin A methyl ether. J Am Chem Soc 112:7050–7051. https://doi.org/10.1021/ja00175a043

    Article  CAS  Google Scholar 

  7. Yousaf M, Zahoor AF, Akhtar R, Ahmad M, Naheed S (2019) Development of green methodologies for Heck, Chan-Lam, Stille and Suzuki cross-coupling reactions. Mol Divers 23:1–19. https://doi.org/10.1007/s11030-019-09988-7

    Article  CAS  Google Scholar 

  8. Akhtar R, Zahoor AF, Parveen B, Suleman M (2019) Development of environmental friendly synthetic strategies for Sonogashira cross coupling reaction: an update. Synthetic Commun 49:167–192. https://doi.org/10.1080/00397911.2018.1514636

    Article  CAS  Google Scholar 

  9. Munir I, Zahoor AF, Rasool N, Naqvi SAR, Zia KM, Ahmad R (2018) Synthetic applications and methodology development of Chan-Lam coupling: a review. Mol Divers 23:215–259. https://doi.org/10.1007/s11030-018-9870-z

    Article  CAS  PubMed  Google Scholar 

  10. Tokuyama H, Yokoshima S, Yamashita T, Fukuyama T (1998) A novel ketone synthesis by a palladium-catalyzed reaction of thiol esters and organozinc reagents. Tetrahedron Lett 39:3189–3192. https://doi.org/10.1016/S0040-4039(98)00456-0

    Article  CAS  Google Scholar 

  11. Fukuyama T, Jow CK, Cheung M (1995) 2- and 4-Nitrobenzenesulfonamides: exceptionally versatile means for preparation of secondary amines and protection of amines. Tetrahedron Lett 36:6373–6374. https://doi.org/10.1016/0040-4039(95)01316-A

    Article  CAS  Google Scholar 

  12. Yang L, Chiu K (1997) Solid phase synthesis of Fmoc N-methyl amino acids: application of the Fukuyama amine synthesis. Tetrahedron Lett 38:7307–7310. https://doi.org/10.1016/S0040-4039(97)01774-7

    Article  CAS  Google Scholar 

  13. Tokuyama H, Kuboyama T, Amano A, Yamashita T, Fukuyama T (2000) A novel transformation of primary amines to N-monoalkylhydroxylamines. Synthesis 2000:1299–1304. https://doi.org/10.1055/s-2000-6428

    Article  Google Scholar 

  14. Amssoms K, Augustyns K, Yamani A, Zhang M, Haemers A (2002) An efficient synthesis of orthogonally protected spermidine. Synthetic Commun 32:319–328. https://doi.org/10.1081/SCC-120002114

    Article  CAS  Google Scholar 

  15. Kan T, Kobayashi H, Fukuyama T (2002) Efficient synthesis of medium-sized cyclic amines by means of 2-nitrobenzenesulfonamide. Synlett 2002:0697–0699. https://doi.org/10.1055/s-2002-25369

    Article  Google Scholar 

  16. Rew Y, Goodman M (2002) Solid-phase synthesis of amine-bridged cyclic enkephalin analogues via on-resin cyclization utilizing the Fukuyama–Mitsunobu reaction. J Org Chem 67:8820–8826. https://doi.org/10.1021/jo020447l

    Article  CAS  PubMed  Google Scholar 

  17. Kambe M, Arai E, Suzuki M, Tokuyama H, Fukuyama T (2001) Intramolecular 1,3-dipolar cycloaddition strategy for enantioselective synthesis of FR-900482 analogues. Org Lett 3:2575–2578. https://doi.org/10.1021/ol016243t

    Article  CAS  PubMed  Google Scholar 

  18. Sumi S, Matsumoto K, Tokuyama H, Fukuyama T (2003) Stereocontrolled total synthesis of (−)-aspidophytine. Tetrahedron 59:8571–8587. https://doi.org/10.1016/j.tet.2003.09.005

    Article  CAS  Google Scholar 

  19. Kurosawa W, Kan T, Fukuyama T (2003) Stereocontrolled total synthesis of (−)-ephedradine A (orantine). J Am Chem Soc 125:8112–8113. https://doi.org/10.1021/ja036011k

    Article  CAS  PubMed  Google Scholar 

  20. Olsen CA, Jørgensen MR, Witt M, Mellor IR, Usherwood PN, Jaroszewski JW, Franzyk H (2003) The choice of phosphane reagent in Fukuyama–Mitsunobu alkylation: intramolecular selectivity between primary and secondary alcohols in the preparation of asymmetric tetraamine building blocks for synthesis of philanthotoxins. Eur J Org Chem 2003:3288–3299. https://doi.org/10.1002/ejoc.200300186

    Article  CAS  Google Scholar 

  21. Okano K, Tokuyama H, Fukuyama T (2006) Total synthesis of (+)-yatakemycin. J Am Chem Soc 128:7136–7137. https://doi.org/10.1021/ja0619455

    Article  CAS  PubMed  Google Scholar 

  22. Olsen CA, Witt M, Hansen SH, Jaroszewski JW, Franzyk H (2005) Fukuyama–Mitsunobu alkylation in amine synthesis on solid phase revisited: N-alkylation with secondary alcohols and synthesis of curtatoxins. Tetrahedron 61:6046–6055. https://doi.org/10.1016/j.tet.2005.04.027

    Article  CAS  Google Scholar 

  23. Kimura M, Seki M (2004) A practical procedure for the synthesis of multifunctional aldehydes through the Fukuyama reduction and elucidation of the reaction site and mechanism. Tetrahedron Lett 45:3219–3223. https://doi.org/10.1016/j.tetlet.2004.02.130

    Article  CAS  Google Scholar 

  24. Mori Y, Seki M (2003) Pd(OH)2/C (Pearlman’s catalyst): a highly active catalyst for Fukuyama, Sonogashira, and Suzuki coupling reactions. J Org Chem 68:1571–1574. https://doi.org/10.1021/jo0265277

    Article  CAS  PubMed  Google Scholar 

  25. Fukuyama T, Cheung M, Jow CK, Hidai Y, Kan T (1997) 2,4-Dinitrobenzenesulfonamides: a simple and practical method for the preparation of a variety of secondary amines and diamines. Tetrahedron Lett 38:5831–5834. https://doi.org/10.1016/S0040-4039(97)01334-8

    Article  CAS  Google Scholar 

  26. Tokuyama H, Yokoshima S, Yamashita T, Shao-Cheng L, Leping L, Fukuyama T (1998) Facile palladium-mediated conversion of ethanethiol esters to aldehydes and ketones. J Braz Chem Soc 9:381–387. https://doi.org/10.1590/S0103-50531998000400011

    Article  CAS  Google Scholar 

  27. Tokuyama H, Yokoshima S, Lin SC, Li L, Fukuyama T (2002) Reduction of ethanethiol esters to aldehydes. Synthesis 2002:1121–1123. https://doi.org/10.1055/s-2002-31969

    Article  Google Scholar 

  28. Miyazaki T, Han-ya Y, Tokuyama H, Fukuyama T (2004) New odorless protocols for the synthesis of aldehydes and ketones from thiol esters. Synlett 2004:477–480. https://doi.org/10.1055/s-2004-815427

    Article  CAS  Google Scholar 

  29. Asadi M, Bonke S, Polyzos A, Lupton DW (2014) Fukuyama reduction and integrated thioesterification/Fukuyama reduction of thioesters and acyl chlorides using continuous flow. ACS Catal 4:2070–2074. https://doi.org/10.1021/cs5004917

    Article  CAS  Google Scholar 

  30. Hara M, Saitoh Y, Nakano H (1990) DNA strand scission by the novel antitumor antibiotic leinamycin. Biochemistry-US 29:5676–5681. https://doi.org/10.1021/bi00476a005

    Article  CAS  Google Scholar 

  31. Kanda Y, Fukuyama T (1993) Total synthesis of (+)-leinamycin. J Am Chem Soc 115:8451–8452. https://doi.org/10.1021/ja00071a066

    Article  CAS  Google Scholar 

  32. Onuki H, Ito K, Kobayashi Y, Matsumori N, Tachibana K, Fusetani N (1998) Absolute structure and total synthesis of lipogrammistin-A, a lipophilic ichthyotoxin of the soapfish. J Org Chem 63:3925–3932. https://doi.org/10.1021/jo9722461

    Article  CAS  Google Scholar 

  33. Fujiwara A, Kan T, Fukuyama T (2000) Total synthesis of lipogrammistin-A: efficient macrocyclization with 2-nitrobenzenesulfonamide. Synlett 2000:1667–1669. https://doi.org/10.1055/s-2000-7950

    Article  Google Scholar 

  34. Daiguji M, Satake M, James KJ, Bishop A, MacKenzie L, Naoki H, Yasumoto T (1998) Structures of new pectenotoxin analogs, pectenotoxin-2 seco acid and 7-epi-pectenotoxin-2 seco acid, isolated from a dinoflagellate and greenshell mussels. Chem Lett 27:653–654. https://doi.org/10.1246/cl.1998.653

    Article  Google Scholar 

  35. Jung JH, Sim CJ, Lee CO (1995) Cytotoxic compounds from a two-sponge association. J Nat Prod 58:1722–1726. https://doi.org/10.1021/np50125a012

    Article  CAS  PubMed  Google Scholar 

  36. Evans DA, Rajapakse HA, Stenkamp D (2002) Asymmetric syntheses of pectenotoxins-4 and-8, part i: synthesis of the C1–C19 subunit. Angew Chem Int Ed 41:4569–4573. https://doi.org/10.1002/1521-3773(20021202)41:23%3C4569::AID-ANIE4569%3E3.0.CO;2-V

    Article  CAS  Google Scholar 

  37. Custar DW, Zabawa TP, Scheidt KA (2008) Total synthesis and structural revision of the marine macrolide neopeltolide. J Am Chem Soc 130:804–805. https://doi.org/10.1021/ja710080q

    Article  CAS  PubMed  Google Scholar 

  38. Vintonyak VV, Kunze B, Sasse F, Maier ME (2008) Total synthesis and biological activity of neopeltolide and analogues. Chem-Eur J 14:11132–11140. https://doi.org/10.1002/chem.200801398

    Article  CAS  PubMed  Google Scholar 

  39. Arroyo IJ, Hu R, Merino G, Tang BZ, Pena-Cabrera E (2009) The smallest and one of the brightest. Efficient preparation and optical description of the parent borondipyrromethene system. J Org Chem 74:5719–5722. https://doi.org/10.1021/jo901014w

    Article  CAS  PubMed  Google Scholar 

  40. Bixa T, Hunter R, Andrijevic A, Petersen W, Su H, Dhoro F (2015) Stereoselective formation of quaternary stereogenic centers via alkylation of α-substituted malonate-imidazolidinones. J Org Chem 80:762–769. https://doi.org/10.1021/jo502140d

    Article  CAS  PubMed  Google Scholar 

  41. Shimizu T, Seki M (2001) Palladium on charcoal-catalyzed Fukuyama coupling reaction. Tetrahedron Lett 42:429–432. https://doi.org/10.1016/S0040-4039(00)01984-5

    Article  CAS  Google Scholar 

  42. Shimizu T, Seki M (2002) A novel synthesis of functionalized ketones via a nickel-catalyzed coupling reaction of zinc reagents with thiolesters. Tetrahedron Lett 43:1039–1042. https://doi.org/10.1016/S0040-4039(01)02296-1

    Article  CAS  Google Scholar 

  43. Mori Y, Seki M (2004) A novel procedure for the synthesis of multifunctional ketones through the Fukuyama coupling reaction employing dialkylzincs. Tetrahedron Lett 45:7343–7345. https://doi.org/10.1016/j.tetlet.2004.07.148

    Article  CAS  Google Scholar 

  44. Mori Y, Seki M (2007) A practical synthesis of multifunctional ketones through the Fukuyama coupling reaction. Adv Synth Catal 349:2027–2038. https://doi.org/10.1002/adsc.200600610

    Article  CAS  Google Scholar 

  45. Kunchithapatham K, Eichman CC, Stambuli JP (2011) Synthesis of diaryl ketones via a phosphine-free Fukuyama reaction. Chem Commun 47:12679–12681. https://doi.org/10.1039/C1CC16114H

    Article  CAS  Google Scholar 

  46. Cherney AH, Reisman SE (2014) Pd-catalyzed Fukuyama cross-coupling of secondary organozinc reagents for the direct synthesis of unsymmetrical ketones. Tetrahedron 70:3259–3265. https://doi.org/10.1016/j.tet.2013.11.104

    Article  CAS  Google Scholar 

  47. Lee JH, Kishi Y (2016) One-pot ketone synthesis with alkylzinc halides prepared from alkyl halides via a single electron transfer (SET) process: new extension of Fukuyama ketone synthesis. J Am Chem Soc 138:7178–7186. https://doi.org/10.1021/jacs.6b03897

    Article  CAS  PubMed  Google Scholar 

  48. Oost R, Misale A, Maulide N (2016) Enantioconvergent Fukuyama cross-coupling of racemic benzylic organozinc reagents. Angew Chem 128:4663–4666. https://doi.org/10.1002/ange.201600597

    Article  Google Scholar 

  49. Gehrtz PH, Kathe P, Fleischer I (2018) Nickel-catalyzed coupling of arylzinc halides with thioesters. Chem-Euro J 24:8774–8778. https://doi.org/10.1002/chem.201801887

    Article  CAS  Google Scholar 

  50. Picciocchi A, Douce R, Alban C (2001) Biochemical characterization of the Arabidopsis biotin synthase reaction. The importance of mitochondria in biotin synthesis. Plant Physiol 127:1224–1233. https://doi.org/10.1104/pp.010346

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Deroose FD, Clercq PJD (1995) Novel enantioselective syntheses of (+)-biotin. J Org Chem 60:321–330. https://doi.org/10.1021/jo00107a009

    Article  CAS  Google Scholar 

  52. Shimizu T, Seki M (2000) Facile synthesis of (+)-biotin via Fukuyama coupling reaction. Tetrahedron Lett 41:5099–5101. https://doi.org/10.1016/S0040-4039(00)00781-4

    Article  CAS  Google Scholar 

  53. Kimura M, Seki M (2004) A novel procedure for the preparation of zinc reagents: a practical synthesis of (+)-biotin. Tetrahedron Lett 45:1635–1637. https://doi.org/10.1016/j.tetlet.2003.12.119

    Article  CAS  Google Scholar 

  54. Seki M, Hatsuda M, Mori Y, Yoshida SI, Yamada SI, Shimizu T (2004) A practical synthesis of (+)-biotin from L-cysteine. Chem-Euro J 10:6102–6110. https://doi.org/10.1002/chem.200400733

    Article  CAS  Google Scholar 

  55. Mori Y, Seki M (2005) Highly efficient phosphine-free Pd(OAc)2-catalyzed Fukuyama coupling reaction: synthesis of a key intermediate for (+)-Biotin under low catalyst loading. Synlett 14:2233–2235. https://doi.org/10.1055/s-2005-872234

    Article  CAS  Google Scholar 

  56. Herzon SB, Woo CM (2012) The diazofluorene antitumor antibiotics: structural elucidation, biosynthetic, synthetic, and chemical biological studies. Nat Prod Rep 29:87–118. https://doi.org/10.1039/C1NP00052G

    Article  CAS  PubMed  Google Scholar 

  57. Tang SQ, Bricard J, Schmitt M, Bihel F (2019) Fukuyama cross-coupling approach to isoprekinamycin: discovery of the highly active and bench-stable palladium precatalyst POxAP. Org Lett 21:844–848. https://doi.org/10.1021/acs.orglett.9b00031

    Article  CAS  PubMed  Google Scholar 

  58. Okouneva T, Azarenko O, Wilson L, Littlefield BA, Jordan MA (2008) Inhibition of centromere dynamics by eribulin (E7389) during mitotic metaphase. Mol Cancer Ther 7:2003–2011. https://doi.org/10.1158/1535-7163

    Article  PubMed  PubMed Central  Google Scholar 

  59. Sakai R, Higa T, Jefford CW, Bernardinelli G (1986) Manzamine A, a novel antitumor alkaloid from a sponge. J Am Chem Soc 108:6404–6405. https://doi.org/10.1021/ja00280a055

    Article  CAS  Google Scholar 

  60. Edrada RA, Proksch P, Wray V, Witte L, Müller WEG, Van Soest RW (1996) Four new bioactive manzamine-type alkaloids from the Philippine marine sponge Xestospongia ashmorica. J Nat Prod 59:1056–1060. https://doi.org/10.1021/np9604083

    Article  CAS  PubMed  Google Scholar 

  61. Ang KK, Holmes MJ, Higa T, Hamann MT, Kara UA (2000) In vivo antimalarial activity of the beta-carboline alkaloid manzamine A. Antimicrob Agents Ch 44:1645–1649. https://doi.org/10.1128/AAC.44.6.1645-1649.2000

    Article  CAS  Google Scholar 

  62. Kita Y, Toma T, Kan T, Fukuyama T (2008) Synthetic studies on (+)-Manzamine A: stereoselective synthesis of the tetracyclic core framework. Org Lett 10:3251–3253. https://doi.org/10.1021/ol801111r

    Article  CAS  PubMed  Google Scholar 

  63. Rogers EF, Snyder HR, Fischer RF (1952) The alkaloids of haplophyton cimicidum. J Am Chem Soc 74:1987–1989. https://doi.org/10.1021/ja01128a034

    Article  CAS  Google Scholar 

  64. Ueda H, Satoh H, Matsumoto K, Sugimoto K, Fukuyama T, Tokuyama H (2009) Total synthesis of (+)-haplophytine. Angew Chem Int Ed 48:7454–7454. https://doi.org/10.1002/anie.200904021

    Article  Google Scholar 

  65. Kam TS, Loh KY, Wei C (1993) Conophylline and conophyllidine: new dimeric alkaloids from Tabernaemontana divaricata. J Nat Prod 56:1865–1871. https://doi.org/10.1021/np50101a001

    Article  CAS  Google Scholar 

  66. Han-ya Y, Tokuyama H, Fukuyama T (2011) Total synthesis of (–)-conophylline and (–)-conophyllidine. Angew Chem 123:4986–4989. https://doi.org/10.1002/ange.201100981

    Article  Google Scholar 

  67. Laing M, Warren FL, White EP (1975) The crystal and molecular structure of the hydrobromide of lepistine, a fungal alkaloid. Tetrahedron Lett 16:269–272. https://doi.org/10.1016/S0040-4039(00)71840-5

    Article  Google Scholar 

  68. Kitabayashi Y, Yokoshima S, Fukuyama T (2014) Total synthesis of (–)-lepistine. Org Lett 16:2862–2864. https://doi.org/10.1021/ol5010033

    Article  CAS  PubMed  Google Scholar 

  69. Dong LB, Yang J, He J, Luo HR, Wu XD, Deng X, Peng LY, Cheng X, Zhao QS (2012) Lycopalhine A, a novel sterically congested Lycopodium alkaloid with an unprecedented skeleton from Palhinhaea cernua. Chem Commun 48:9038–9040. https://doi.org/10.1039/C2CC34676A

    Article  CAS  Google Scholar 

  70. Ochi Y, Yokoshima S, Fukuyama T (2016) Total synthesis of lycopalhine A. Org Lett 18:1494–1496. https://doi.org/10.1021/acs.orglett.6b00338

    Article  CAS  PubMed  Google Scholar 

  71. Dong M, Zhang ML, Shi QW, Gu YC, Kiyota H (2009) The daphniphyllum alkaloids. Curr Org Chem 13:646–682. https://doi.org/10.2174/138527209787847345

    Article  CAS  Google Scholar 

  72. Yamada R, Adachi Y, Yokoshima S, Fukuyama T (2016) Total synthesis of (−)-daphenylline. Angew Chem 128:6171–6174. https://doi.org/10.1002/ange.201601958

    Article  Google Scholar 

  73. Moldvai I, Temesvári-Major E, Incze M, Szentirmay E, Gács-Baitz E, Szántay C (2004) Enantioefficient synthesis of α-ergocryptine: first direct synthesis of (+)-lysergic acid. J Org Chem 69:5993–6000. https://doi.org/10.1021/jo049209b

    Article  CAS  PubMed  Google Scholar 

  74. Kanno R, Yokoshima S, Kanai M, Fukuyama T (2018) Total synthesis of (+)-lysergic acid. J Antibiot 71:240–247. https://doi.org/10.1038/ja.2017.80

    Article  CAS  Google Scholar 

  75. Nakagawa H, Sugahara T, Ogasawara K (2000) A concise route to (−)-kainic acid. Org Lett 2:3181–3183. https://doi.org/10.1021/ol006377r

    Article  CAS  PubMed  Google Scholar 

  76. Sakaguchi H, Tokuyama H, Fukuyama T (2007) Stereocontrolled total synthesis of (−)-kainic acid. Org Lett 9:1635–1638. https://doi.org/10.1021/ol0631197

    Article  CAS  PubMed  Google Scholar 

  77. Gigant B, Wang C, Ravelli RB, Roussi F, Steinmetz MO, Curmi PA, Sobel A, Knossow M (2005) Structural basis for the regulation of tubulin by vinblastine. Nature 435:519–522. https://doi.org/10.1038/nature03566

    Article  CAS  PubMed  Google Scholar 

  78. Miyazaki T, Yokoshima S, Simizu S, Osada H, Tokuyama H, Fukuyama T (2007) Synthesis of (+)-vinblastine and its analogues. Org Lett 9:4737–4740. https://doi.org/10.1021/ol702040y

    Article  CAS  PubMed  Google Scholar 

  79. Yokoshima S, Tokuyama H, Fukuyama T (2010) Total synthesis of (+)-vinblastine: control of the stereochemistry at C18′. Chem Rec 10:101–118. https://doi.org/10.1002/tcr.200900025

    Article  CAS  PubMed  Google Scholar 

  80. Karpf M, Trussardi R (2001) New, azide-free transformation of epoxides into 1,2-diamino compounds: synthesis of the anti-influenza neuraminidase inhibitor oseltamivir phosphate (Tamiflu). J Org Chem 66:2044–2051. https://doi.org/10.1021/jo005702l

    Article  CAS  PubMed  Google Scholar 

  81. Raghavan S, Babu VS (2011) Enantioselective synthesis of oseltamivir phosphate. Tetrahedron 67:2044–2050. https://doi.org/10.1016/j.tet.2011.01.064

    Article  CAS  Google Scholar 

  82. Taber DF, Neubert TD, Rheingold AL (2002) Synthesis of (−)-morphine. J Am Chem Soc 124:12416–12417. https://doi.org/10.1021/ja027882h

    Article  CAS  PubMed  Google Scholar 

  83. Umihara H, Yokoshima S, Inoue M, Fukuyama T (2017) Total synthesis of (−)-morphine. Chem-Euro J 23:6993–6995. https://doi.org/10.1002/chem.201701438

    Article  CAS  Google Scholar 

  84. Fang WJ, Yakovleva T, Aldrich JV (2011) A convenient approach to synthesizing peptide C-terminal N-alkyl amides. Pept Sci 96:715–722. https://doi.org/10.1002/bip.21600

    Article  CAS  Google Scholar 

  85. Wang L, Liu WQ, Saraux N, Vidal M, Broussy S (2015) Solid phase synthesis of constrained 13-membered peptide macrocycles employing Fukuyama–Mitsunobu alkylations. Tetrahedron Lett 56:2456–2459. https://doi.org/10.1016/j.tetlet.2015.03.091

    Article  CAS  Google Scholar 

  86. Lindgren M, Hällbrink M, Prochiantz A, Langel Ü (2000) Cell-penetrating peptides. Trends Pharmacol Sci 21:99–103. https://doi.org/10.1016/S0165-6147(00)01447-4

    Article  CAS  PubMed  Google Scholar 

  87. Marouseau E, Neckebroeck A, Larkin H, Le Roux A, Volkov L, Lavoie CL, Marsault É (2017) Modular sub-monomeric cell-penetrating guanidine-rich peptoids-synthesis, assembly and biological evaluation. RSC Adv 7:6059–6063. https://doi.org/10.1039/C6RA27898A

    Article  CAS  Google Scholar 

  88. Poulsen MH, Lucas S, Bach TB, Barslund AF, Wenzler C, Jensen CB, Kristensen AS, Strømgaard K (2013) Structure-activity relationship studies of argiotoxins: selective and potent inhibitors of ionotropic glutamate receptors. J Med Chem 56:1171–1181. https://doi.org/10.1021/jm301602d

    Article  CAS  PubMed  Google Scholar 

  89. Nørager NG, Poulsen MH, Strømgaard K (2018) Controlling Ca2+ permeable α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors with photochromic ion channel blockers. J Med Chem 61:8048–8053. https://doi.org/10.1021/acs.jmedchem.8b00756

    Article  CAS  PubMed  Google Scholar 

  90. Sable GA, Lee KJ, Shin MK, Lim HS (2018) Submonomer strategy toward divergent solid-phase synthesis of α-ABpeptoids. Org Lett 20:2526–2529. https://doi.org/10.1021/acs.orglett.8b00661

    Article  CAS  PubMed  Google Scholar 

  91. Hidai Y, Kan T, Fukuyama T (1999) Total synthesis of polyamine toxin HO-416b utilizing the 2-nitrobenzenesulfonamide protecting group. Tetrahedron Lett 40:4711–4714. https://doi.org/10.1016/S0040-4039(99)00851-5

    Article  CAS  Google Scholar 

  92. Pegg AE (1988) Polyamine metabolism and its importance in neoplastic growth and as a target for chemotherapy. Cancer Res 48:759–774. https://doi.org/10.1016/j.molbiopara.2008.03.008

    Article  CAS  PubMed  Google Scholar 

  93. Miyahara M, Shiozaki H, Tukada H, Ishikawa Y, Oikawa M (2018) Photoremovable NPEC group compatible with Ns protecting group in polyamine synthesis. Tetrahedron Lett 59:4259–4262. https://doi.org/10.1016/j.tetlet.2018.10.045

    Article  CAS  Google Scholar 

  94. Matsunaga S, Jimbo M, Gill MB, Lash-Van Wyhe LL, Murata M, Nonomura KI, Swanson T, Sakai R (2011) Isolation, amino acid sequence and biological activities of novel long-chain polyamine-associated peptide toxins from the sponge Axinyssa aculeata. ChemBioChem 12:2191–2200. https://doi.org/10.1002/cbic.201100329

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Shiozaki H, Miyahara M, Otsuka K, Miyako K, Honda A, Takasaki Y, Takamizawa S, Tukada H, Ishilawa Y, Sakai R, Oikawa M (2018) Studies on aculeines: synthetic strategy to the fully protected protoaculeine B, the N-terminal amino acid of aculeine B. Org Lett 20:3403–3407. https://doi.org/10.1021/acs.orglett.8b01331

    Article  CAS  PubMed  Google Scholar 

  96. Kalantzi S, Athanassopoulos CM, Ruonala R, Helariutta Y, Papaioannou D (2019) A general approach for the liquid phase fragment synthesis of orthogonally protected naturally occurring polyamines and applications thereof. J Org Chem 84:15118–15130. https://doi.org/10.1021/acs.joc.9b02066

    Article  CAS  PubMed  Google Scholar 

  97. Sharidan SA, Konishi GI (2019) Synthesis and luminescence properties of diamine monomers and polyamides with highly twisted N,N-bis (dialkylamino) arene AIE luminogens. Asian J Org Chem 8:404–410. https://doi.org/10.1002/ajoc.201900056

    Article  CAS  Google Scholar 

  98. Borgini M, Orofino F, Truglio GI, Balestri L, Botta M (2019) A gram-scale synthesis of a macrocyclic amidinourea with strong antifungal activity through a Fukuyama tri-protected polyamine intermediate. Arkivoc 2019:168–177. https://doi.org/10.24820/ark.5550190.p010.895

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are thankful to Government College University Faisalabad and Higher Education Commission, Pakistan, for providing facilities to carry out this work.

Funding

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ameer Fawad Zahoor.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest, financial or otherwise.

Consent for publication

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sikandar, S., Zahoor, A.F., Naheed, S. et al. Fukuyama reduction, Fukuyama coupling and Fukuyama–Mitsunobu alkylation: recent developments and synthetic applications. Mol Divers 26, 589–628 (2022). https://doi.org/10.1007/s11030-021-10194-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11030-021-10194-7

Keywords

Navigation