Skip to main content
Log in

Synthesis and pharmacological properties of polysubstituted 2-amino-4H-pyran-3-carbonitrile derivatives

  • Comprehensive review
  • Published:
Molecular Diversity Aims and scope Submit manuscript

Abstract

2-Amino-3-cyano-4H-chromenes are structural core motifs that received increasing attention in the last years due to their interesting potential pharmacological properties. In this review, the synthetic methods for these compounds are classified based on the type of catalyst in the pertinent reactions. In addition, the wide range of pharmacological properties of these compounds is covered in a separate section.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Scheme 3
Scheme 4
Scheme 5
Scheme 6
Scheme 7
Scheme 8
Scheme 9
Scheme 10
Scheme 11
Scheme 12
Scheme 13
Scheme 14
Scheme 15
Scheme 16
Scheme 17
Scheme 18
Scheme 19
Scheme 20
Scheme 21
Scheme 22
Scheme 23
Scheme 24
Scheme 25
Scheme 26
Scheme 27
Scheme 28
Scheme 29
Scheme 30
Scheme 31
Scheme 32
Scheme 33
Scheme 34
Scheme 35
Scheme 36
Scheme 37
Scheme 38
Scheme 39
Scheme 40
Scheme 41
Scheme 42
Scheme 43
Scheme 44
Scheme 45
Scheme 46
Scheme 47
Scheme 48
Scheme 49
Scheme 50
Scheme 51
Scheme 52
Scheme 53
Scheme 54
Scheme 55
Scheme 56
Scheme 57
Scheme 58
Scheme 59
Scheme 60
Scheme 61
Scheme 62
Scheme 63
Scheme 64
Scheme 65
Scheme 66
Scheme 67
Scheme 68
Scheme 69
Scheme 70
Scheme 71
Scheme 72
Scheme 73
Scheme 74
Scheme 75
Scheme 76
Scheme 77
Scheme 78
Scheme 79
Scheme 80
Scheme 81
Scheme 82
Scheme 83
Scheme 84
Scheme 85
Scheme 86
Scheme 87
Scheme 88
Scheme 89
Scheme 90
Scheme 91
Scheme 92
Scheme 93
Scheme 94
Scheme 95
Scheme 96
Scheme 97
Scheme 98
Scheme 99
Scheme 100
Scheme 101
Scheme 102
Scheme 103
Scheme 104
Scheme 105
Scheme 106
Scheme 107
Scheme 108
Scheme 109
Scheme 110
Scheme 111
Scheme 112
Scheme 113
Scheme 114
Scheme 115
Scheme 116
Scheme 117
Scheme 118
Scheme 119
Scheme 120
Scheme 121
Scheme 122
Scheme 123
Scheme 124
Scheme 125
Scheme 126
Scheme 127
Scheme 128
Scheme 129
Scheme 130
Scheme 131
Scheme 132
Scheme 133
Scheme 134
Scheme 135
Scheme 136
Scheme 137
Scheme 138
Scheme 139
Scheme 140
Scheme 141
Scheme 142
Scheme 143
Scheme 144
Scheme 145
Scheme 146
Scheme 147
Scheme 148
Scheme 149
Scheme 150
Scheme 151
Scheme 152
Scheme 153
Scheme 154
Scheme 155
Scheme 156
Scheme 157
Scheme 158
Scheme 159
Scheme 160
Scheme 161
Scheme 162
Scheme 163
Scheme 164
Scheme 165
Scheme 166
Scheme 167
Scheme 168
Scheme 169
Scheme 170
Scheme 171
Scheme 172
Scheme 173
Scheme 174
Scheme 175
Scheme 176
Scheme 177
Scheme 178
Scheme 179
Scheme 180
Scheme 181
Scheme 182
Scheme 183
Scheme 184
Scheme 185

Similar content being viewed by others

References

  1. Mandha SR, Siliveri S, Alla M, Bommena VR, Bommineni MR, Balasubramanian S (2012) Eco-friendly synthesis and biological evaluation of substituted pyrano [2,3-c] pyrazoles. Bioorg Med Chem Lett 22:5272–5278. https://doi.org/10.1016/j.bmcl.2012.06.055

    Article  CAS  Google Scholar 

  2. Kalaria PN, Satasia SP, Raval DK (2014) Synthesis, characterization and biological screening of novel 5-imidazopyrazole incorporated fused pyran motifs under microwave irradiation. New J Chem 38:1512–1521. https://doi.org/10.1039/C3NJ01327H

    Article  CAS  Google Scholar 

  3. Kemnitzer W, Drewe J, Jiang S, Zhang H, Zhao J, Crogan-Grundy C, Xu L, Lamothe S, Gourdeau H, Denis R, Tseng B (2007) Discovery of 4-aryl-4 H-chromenes as a new series of apoptosis inducers using a cell-and caspase-based high-throughput screening assay. 3. Structure-activity relationships of fused rings at the 7, 8-positions. J Med Chem 50:2858–2864. https://doi.org/10.1021/jm070216c

    Article  CAS  Google Scholar 

  4. Zhang G, Zhang Y, Yan J, Chen R, Wang S, Ma Y, Wang R (2012) One-pot enantioselective synthesis of functionalized pyranocoumarins and 2-amino-4 H-chromenes: discovery of a type of potent antibacterial agent. J Org Chem 77:878–888. https://doi.org/10.1021/jo202020m

    Article  CAS  Google Scholar 

  5. Erichsen MN, Huynh TH, Abrahamsen B, Bastlund JF, Bundgaard C, Monrad O, Bekker-Jensen A, Nielsen CW, Frydenvang K, Jensen AA, Bunch L (2010) Structure-activity relationship study of first selective inhibitor of excitatory amino acid transporter subtype 1: 2-amino-4-(4-methoxyphenyl)-7-(naphthalen-1-yl)-5-oxo-5, 6, 7, 8-tetrahydro-4 H-chromene-3-carbonitrile (UCPH-101). J Med Chem 53:7180–7191. https://doi.org/10.1021/jm1009154

    Article  CAS  Google Scholar 

  6. Kaur R, Naaz F, Sharma S, Mehndiratta S, Gupta MK, Bedi PM, Nepali K (2015) Screening of a library of 4-aryl/heteroaryl-4H-fused pyrans for xanthine oxidase inhibition: synthesis, biological evaluation and docking studies. Med Chem Res 24:3334–3349. https://doi.org/10.1007/s00044-015-1382-0

    Article  CAS  Google Scholar 

  7. Kemnitzer W, Drewe J, Jiang S, Zhang H, Crogan-Grundy C, Labreque D, Bubenick M, Attardo G, Denis R, Lamothe S, Gourdeau H, Tseng B, Kasibhatla S, Cai SX (2008) Discovery of 4-aryl-4 H-chromenes as a new series of apoptosis inducers using a cell-and caspase-based high throughput screening assay. 4. Structure–activity relationships of N-alkyl substituted pyrrole fused at the 7, 8-positions. J Med Chem 51:417–423. https://doi.org/10.1021/jm7010657

    Article  CAS  Google Scholar 

  8. Baitha A, Gopinathan A, Krishnan K, Dabholkar VV (2018) Synthesis of 2-amino-4-(2-ethoxybenzo [d][1,3] dioxol-5-yl)-4H-pyran-3-carbonitrile derivatives and their biological evaluation. J Heterocycl Chem 55:1189–1192. https://doi.org/10.1002/jhet.3152

    Article  CAS  Google Scholar 

  9. Schmitt F, Gold M, Rothemund M, Andronache I, Biersack B, Schobert R, Mueller T (2019) New naphthopyran analogues of LY290181 as potential tumor vascular-disrupting agents. Eur J Med Chem 163:160–168. https://doi.org/10.1016/j.ejmech.2018.11.055

    Article  CAS  Google Scholar 

  10. Sonsona I, Marqués-López E, Herrera R (2015) Enantioselective organocatalyzed synthesis of 2-amino-3-cyano-4H-chromene derivatives. Symmetry 7:1519–1535. https://doi.org/10.3390/sym7031519

    Article  CAS  Google Scholar 

  11. Kidwai M, Saxena S, Khan MK, Thukral SS (2005) Aqua mediated synthesis of substituted 2-amino-4H-chromenes and in vitro study as antibacterial agents. Bioorg Med Chem Lett 15:4295–4298. https://doi.org/10.1016/j.bmcl.2005.06.041

    Article  CAS  Google Scholar 

  12. Dinh Thanh N, Son Hai D, Thi Ngoc Bich V, Thi Thu Hien P, Thi Ky Duyen N, Thi Mai N, Thi Dung T, Van Thi Kim H, Ngoc Toan V, Huy NH, Van Thi Thanh T (2019) Synthesis and structure of some substituted 2-amino-4-aryl-7-propargyloxy-4 H-chromene-3-carbonitriles. Synth Commun 49:102–117. https://doi.org/10.1080/00397911.2018.1543779

    Article  CAS  Google Scholar 

  13. Kidwai M, Poddar R, Bhardwaj S, Singh S, Luthra PM (2010) Aqua mediated synthesis of 2-amino-6-benzothiazol-2-ylsulfanyl-chromenes and its in vitro study, explanation of the structure–activity relationships (SARs) as antibacterial agent. Eur J Med Chem 45:5031–5038. https://doi.org/10.1016/j.ejmech.2010.08.010

    Article  CAS  Google Scholar 

  14. Karimi-Jaberi Z, Pooladian B (2012) A facile synthesis of new 2-amino-4H-pyran-3-carbonitriles by a one-pot reaction of α, α′-bis (arylidene) cycloalkanones and malononitrile in the presence of K2CO3. Sci World J 2012:1–5

    Google Scholar 

  15. Karami B, Khodabakhshi S, Eskandari K (2012) A one-pot, three-component synthesis of new pyrano [2,3-h] coumarin derivatives. Tetrahedron Lett 53:1445–1446. https://doi.org/10.1016/j.tetlet.2012.01.024

    Article  CAS  Google Scholar 

  16. Rbaa M, Bazdi O, Hichar A, Lakhrissi Y, Ounine K, Lakhrissi B (2018) Synthesis, characterization and biological activity of new pyran derivatives of 8-hydroxyquinoline. Eurasian J Anal Chem 13:19–30

    CAS  Google Scholar 

  17. Mohan TJ, Bahulayan D (2017) Design, synthesis and fluorescence property evaluation of blue emitting triazole-linked chromene peptidomimetics. Mol Divers 21:585–596. https://doi.org/10.1007/s11030-017-9744-9

    Article  CAS  Google Scholar 

  18. Yao C, Feng X, Wang C, Jiang B, Yu C, Wang X, Li T, Tu S (2011) Solvent-free three-component synthesis of 7-aryl-1, 1-dioxothieno [3,2-b] pyran derivatives catalyzed by ammonium acetate. J Heterocycl Chem 48:1111–1116. https://doi.org/10.1002/jhet.696

    Article  CAS  Google Scholar 

  19. Damavandi S (2011) Base-catalyzed three-component synthesis of 2-amino-4,5-dihydro-4-arylpyrano [3,2-b] indole-3-carbonitriles. Heterocycl Commun 17:125–127. https://doi.org/10.1515/hc.2011.032

    Article  CAS  Google Scholar 

  20. Lei M, Ma L, Hu L (2011) A green, efficient, and rapid procedure for the synthesis of 2-amino-3-cyano-1,4,5,6-tetrahydropyrano [3,2-c] quinolin-5-one derivatives catalyzed by ammonium acetate. Tetrahedron Lett 52:2597–2600. https://doi.org/10.1016/j.tetlet.2011.03.061

    Article  CAS  Google Scholar 

  21. Ghadari R, Hajishaabanha F, Aghaei M, Shaabani A, Ng SW (2012) A facile three-and four-component procedure toward the synthesis of functionalized pyrano-and benzo [f] quinoxaline derivatives. Mol Divers 16:453–461. https://doi.org/10.1007/s11030-012-9379-9

    Article  CAS  Google Scholar 

  22. Gein VL, Zamaraeva TM, Slepukhin PA (2014) A novel four-component synthesis of ethyl 6-amino-4-aryl-5-cyano-2, 4-dihydropyrano [2,3-c] pyrazole-3-carboxylates. Tetrahedron Lett 55:4525–4528. https://doi.org/10.1016/j.tetlet.2014.06.077

    Article  CAS  Google Scholar 

  23. Wang SL, Wu FY, Cheng C, Zhang G, Liu YP, Jiang B, Shi F, Tu SJ (2011) Multicomponent synthesis of poly-substituted benzo [a] pyrano [2,3-c] phenazine derivatives under microwave heating. ACS Comb Sci 13:135–139. https://doi.org/10.1021/co1000376

    Article  CAS  Google Scholar 

  24. Shestopalov AM, Larionova NA, Fedorov AE, Rodinovskaya LA, Mortikov VY, Zubarev AA, Bushmarinov IS (2013) Synthesis of isomeric isothiazolo [4′,3′: 4,5]-and isothiazolo [4′,5′: 4,5] thieno [3,2-b] pyrano [2,3-d] pyridines by combination of domino reactions. ACS Comb Sci 15:541–545. https://doi.org/10.1021/co400066y

    Article  CAS  Google Scholar 

  25. Khodabakhshi S, Karami B, Eskandari K, Farahi M (2014) Synthesis of new 4-aroyl-pyrano [c] chromenes via a one-pot, three-component reaction based on aryl glyoxals. Tetrahedron Lett 55:3753–3755. https://doi.org/10.1016/j.tetlet.2014.05.072

    Article  CAS  Google Scholar 

  26. Han G, Du J, Chen L, Zhao L (2014) Synthesis and characterization of 11-amino-3-methoxy-8-substituted-12-aryl-8,9-dihydro-7H-chromeno [2,3-b] quinolin-10 (12H)-one derivatives. J Heterocycl Chem 51:1094–1099. https://doi.org/10.1002/jhet.2010

    Article  CAS  Google Scholar 

  27. Molla A, Hussain S (2014) Borax catalyzed domino reactions: synthesis of highly functionalised pyridines, dienes, anilines and dihydropyrano [3,2-c] chromenes. RSC Adv 4:29750–29758. https://doi.org/10.1039/C4RA03627A

    Article  CAS  Google Scholar 

  28. El-Ablak FZ, Abu-Elenein NS, Sofan MA (2016) Synthesis of new pyrrolo heterocycles (i): novel synthesis of pyrano [2,3-c] pyrrole, isoindoline, pyrrolo [3,4-b] pyridine, and pyrrolo [3,4-d] pyrimidine derivatives. J Heterocycl Chem 53:1999–2006. https://doi.org/10.1002/jhet.2520

    Article  CAS  Google Scholar 

  29. Wang X, Liu M, Chen Z (2016) Brønsted-acid catalyzed cascade annulations toward the fused pyranoquinoline derivatives. Tetrahedron 72:4423–4426. https://doi.org/10.1016/j.tet.2016.06.004

    Article  CAS  Google Scholar 

  30. Almansour AI, Kumar RS, Arumugam N, Sriram D (2012) A solvent free, four-component synthesis and 1, 3-dipolar cycloaddition of 4(H)-pyrans with nitrile oxides: Synthesis and discovery of antimycobacterial activity of enantiomerically pure 1,2,4-oxadiazoles. Eur J Med Chem 53:416–423. https://doi.org/10.1016/j.ejmech.2012.04.021

    Article  CAS  Google Scholar 

  31. Aghbash KO, Pesyan NN, Notash B (2018) The clean synthesis and confirmatory structural characterization of new 2-amino-4, 8-dihydropyrano [3,2-b] pyran-3-cyano based on Kojic acid. Monatshefte Chem Chem Mon 149:2059–2067. https://doi.org/10.1007/s00706-018-2254-3

    Article  CAS  Google Scholar 

  32. Rajasekhar M, Rao KUM, Sundar CS, Reddy NB, Nayak SK, Chemical Reddy C S, Bulletin Pharmaceutical (2012) Green synthesis and bioactivity of 2-amino-4h-chromen-4-yl-phosphonates. Chem Pharm Bull 60:854–858. https://doi.org/10.1248/cpb.c12-00160

    Article  CAS  Google Scholar 

  33. Makawana JA, Patel MP, Patel RG (2012) Synthesis and antimicrobial evaluation of new pyrano [4,3-b] pyran and pyrano [3,2-c] chromene derivatives bearing a 2-thiophenoxyquinoline nucleus. Arch Pharm 345:314–322. https://doi.org/10.1002/ardp.201100203

    Article  CAS  Google Scholar 

  34. Rao NK, Rao TN, Parvatamma B, Devi KP, Setty SC (2018) Multi component one pot synthesis and characterization of derivatives of 2-amino-7, 7-dimethyl-5-oxo-4-phenyl-5,6,7,8-tetrahydro-4H-chromene-3-carbonitrile and study of anti-microbial activity. Bull Chem Soc Ethiop 32:133–138. https://doi.org/10.4314/bcse.v32i1.12

    Article  CAS  Google Scholar 

  35. Makawana JA, Mungra DC, Patel MP, Patel RG (2011) Microwave assisted synthesis and antimicrobial evaluation of new fused pyran derivatives bearing 2-morpholinoquinoline nucleus. Bioorg Med Chem Lett 21:6166–6169. https://doi.org/10.1016/j.bmcl.2011.07.123

    Article  CAS  Google Scholar 

  36. Olyaei A, Shahsavari MS, Sadeghpour M (2018) Organocatalytic approach toward the green one-pot synthesis of novel benzo [f] chromenes and 12H-benzo [5,6] chromeno [2,3-b] pyridines. Res Chem Intermed 44:943–956. https://doi.org/10.1007/s11164-017-3145-7

    Article  CAS  Google Scholar 

  37. Mansoor SS, Logaiya K, Aswin K, Sudhan PN (2015) An appropriate one-pot synthesis of 3, 4-dihydropyrano [c] chromenes and 6-amino-5-cyano-4-aryl-2-methyl-4H-pyrans with thiourea dioxide as an efficient, reusable organic catalyst in aqueous medium. J Taibah Univ Sci 9:213–226. https://doi.org/10.1016/j.jtusci.2014.09.008

    Article  Google Scholar 

  38. Brahmachari G, Banerjee B (2013) Facile and one-pot access to diverse and densely functionalized 2-amino-3-cyano-4H-pyrans and pyran-annulated heterocyclic scaffolds via an eco-friendly multicomponent reaction at room temperature using urea as a novel organo-catalyst. ACS Sustain Chem Eng 2:411–422. https://doi.org/10.1021/sc400312n

    Article  CAS  Google Scholar 

  39. Wiener C, Schroeder CH, West BD, Link KP (1962) Studies on the 4-hydroxycoumarins. XVIII. 1a 3-[α-(acetamidomethyl) benzyl]-4-hydroxycoumarin and related products1b. J Org Chem 27:3086–3088. https://doi.org/10.1021/jo01056a024

    Article  CAS  Google Scholar 

  40. Guo RY, An ZM, Mo LP, Yang ST, Liu HX, Wang SX, Zhang ZH (2013) Meglumine promoted one-pot, four-component synthesis of pyranopyrazole derivatives. Tetrahedron 69:9931–9938. https://doi.org/10.1016/j.tet.2013.09.082

    Article  CAS  Google Scholar 

  41. Gomha SM, Abdelrazek FM (2016) A facile three-component one-pot synthesis of some novel tricyclic hetero-ring systems. J Heterocycl Chem 53:1892–1896. https://doi.org/10.1002/jhet.2503

    Article  CAS  Google Scholar 

  42. Huynh TH, Abrahamsen B, Madsen KK, Gonzalez-Franquesa A, Jensen AA, Bunch L (2012) Design, synthesis and pharmacological characterization of coumarin-based fluorescent analogs of excitatory amino acid transporter subtype 1 selective inhibitors, UCPH-101 and UCPH-102. Bioorg Med Chem 20:6831–6839. https://doi.org/10.1016/j.bmc.2012.09.049

    Article  CAS  Google Scholar 

  43. Yan C, Theodorescu D, Miller B, Kumar A, Kumar V, Ross D, Wempe MF (2016) Synthesis of novel Ral inhibitors: an in vitro and in vivo study. Bioorg Med Chem Lett 26:5815–5818. https://doi.org/10.1016/j.bmcl.2016.10.021

    Article  CAS  Google Scholar 

  44. Hansen SW, Erichsen MN, Huynh TH, Ruiz JA, Haym I, Bjørn-Yoshimoto WE, Abrahamsen B, Hansen J, Storgaard M, Eriksen AL, Jensen AA (2016) New Insight into the structure–activity relationships of the selective excitatory amino acid transporter subtype 1 (EAAT1) inhibitors UCPH-101 and UCPH-102. Chem Med Chem 11:382–402. https://doi.org/10.1002/cmdc.201500525

    Article  CAS  Google Scholar 

  45. Mahdavi SM, Habibi A, Dolati H, Shahcheragh SM, Sardari S, Azerang P (2018) Synthesis and antimicrobial evaluation of 4H-pyrans and schiff bases fused 4H-pyran derivatives as inhibitors of mycobacterium bovis (BCG). Iran J Pharm Res 17:1229–1239

    CAS  Google Scholar 

  46. Jirandehi HF, Mirzaiean M (2012) Synthesis of pyrano [3,2-c] pyridines derivatives. Asian J Chem 24:3168–3170

    CAS  Google Scholar 

  47. Jayarajan R, Vasuki G (2012) Building libraries of skeletally diverse scaffolds from novel heterocyclic active methylene compound through multi-component reactions. Tetrahedron Lett 53:3044–3048. https://doi.org/10.1016/j.tetlet.2012.04.013

    Article  CAS  Google Scholar 

  48. Ye Z, Xu R, Shao X, Xu X, Li Z (2010) One-pot synthesis of polyfunctionalized 4H-pyran derivatives bearing fluorochloro pyridyl moiety. Tetrahedron Lett 51:4991–4994. https://doi.org/10.1016/j.tetlet.2010.07.065

    Article  CAS  Google Scholar 

  49. Chen T, Xu XP, Ji SJ (2013) Facile and efficient synthesis of indol-3-yl substituted pyran derivatives via one-pot multicomponent reactions under ultrasonic irradiation. J Heterocycl Chem 50:244–2051. https://doi.org/10.1002/jhet.983

    Article  CAS  Google Scholar 

  50. Murali K, Arya KR, Prasad KJ (2015) Design and synthesis of pyrano [2,3-a] carbazoles by multicomponent reaction. Synth Commun 45:586–598. https://doi.org/10.1080/00397911.2014.956368

    Article  CAS  Google Scholar 

  51. Kemnitzer W, Drewe J, Jiang S, Zhang H, Wang Y, Zhao J, Jia S, Herich J, Labreque D, Storer R, Meerovitch K (2004) Discovery of 4-aryl-4H-chromenes as a new series of apoptosis inducers using a cell-and caspase-based high-throughput screening assay. 1. Structure–activity relationships of the 4-aryl group. J Med Chem 47:6299–6310. https://doi.org/10.1021/jm049640t

    Article  CAS  Google Scholar 

  52. Akbarzadeh T, Rafinejad A, Mollaghasem JM, Safavi M, Fallah-Tafti A, Pordeli M, Ardestani SK, Shafiee A, Foroumadi A (2012) 2-Amino-3-cyano-4-(5-arylisoxazol-3-yl)-4H-chromenes: synthesis and in vitro cytotoxic activity. Arch Pharm 345:386–392. https://doi.org/10.1002/ardp.201100345

    Article  CAS  Google Scholar 

  53. Chen C, Lu M, Liu Z, Wan J, Tu Z, Zhang T, Yan M (2013) Synthesis and evaluation of 2-amino-4H-pyran-3-carbonitrile derivatives as antitubercular agents. Open J Med Chem 3:128–135. https://doi.org/10.4236/ojmc.2013.34015

    Article  CAS  Google Scholar 

  54. Thomas N, Zachariah SM, Ramani P (2016) 4-Aryl-4H-chromene-3-carbonitrile derivates: synthesis and preliminary anti-breast cancer studies. J Heterocycl Chem 53:1778–1782. https://doi.org/10.1002/jhet.2483

    Article  CAS  Google Scholar 

  55. Balalaie S, Khazaie A, Ashouriha M (2013) One-pot synthesis of dihydropyrano [2,3-c] chromenes via a three-component reaction in aqueous media. Comb Chem High Throughput Screening 16:845–850. https://doi.org/10.2174/1386207311301010005

    Article  CAS  Google Scholar 

  56. Gaikwad SS, Kishan SL, Suryawanshi VS, Kulkarni DR (2012) Synthesis and Biological activity of some 2-amino-4(-4-substituted phenyl)-6-(naphtho[2,1-b]furan-2yl)-4H-pyran-3-carbonitrile derivatives. Int J Basic Appl Res 3:80–83

    Google Scholar 

  57. Li JL, Li Q, Yang KC, Li Y, Zhou L, Han B, Peng C, Gou XJ (2016) A practical green chemistry approach to synthesize fused bicyclic 4H-pyranes via an amine catalysed 1,4-addition and cyclization cascade. RSC Adv 6:38875–38879. https://doi.org/10.1039/C6RA06441H

    Article  CAS  Google Scholar 

  58. Sashidhara KV, Modukuri RK, Singh S, Rao KB, Teja GA, Gupta S, Shukla S (2015) Design and synthesis of new series of coumarin–aminopyran derivatives possessing potential anti-depressant-like activity. Bioorg Med Chem Lett 25:337–341. https://doi.org/10.1016/j.bmcl.2014.11.036

    Article  CAS  Google Scholar 

  59. Mungra DC, Patel MP, Rajani DP, Patel RG (2011) Synthesis and identification of β-aryloxyquinolines and their pyrano [3,2-c] chromene derivatives as a new class of antimicrobial and antituberculosis agents. Eur J Med Chem 46:4192–4200. https://doi.org/10.1016/j.ejmech.2011.06.022

    Article  CAS  Google Scholar 

  60. Seydimemet M, Ablajan K, Hamdulla M, Li W, Omar A, Obul M (2016) l-Proline catalyzed four-component one-pot synthesis of coumarin-containing dihydropyrano [2,3-c] pyrazoles under ultrasonic irradiation. Tetrahedron 72:7599–7605. https://doi.org/10.1016/j.tet.2016.10.016

    Article  CAS  Google Scholar 

  61. Li Y, Chen H, Shi C, Shi D, Ji S (2010) Efficient one-pot synthesis of spirooxindole derivatives catalyzed by l-proline in aqueous medium. J Comb Chem 12:231–237. https://doi.org/10.1021/cc9001185

    Article  CAS  Google Scholar 

  62. Poursattar Marjani A, Ebrahimi Saatluo B, Nouri F (2018) An efficient synthesis of 4H-chromene derivatives by a one-pot, three-component reaction. Iran J Chem Chem Eng (IJCCE) 37:149–157

    CAS  Google Scholar 

  63. Kalla RM, Choi JS, Yoo JW, Byeon SJ, Heo MS, Kim I (2014) Synthesis of 2-amino-3-cyano-4H-chromen-4-ylphosphonates and their anticancer properties. Eur J Med Chem 76:61–66. https://doi.org/10.1016/j.ejmech.2014.02.025

    Article  CAS  Google Scholar 

  64. Satheesh M, Balachandran AL, Devi PR, Deepthi A (2018) An expedient synthesis of spirooxindoles incorporating 2-amino pyran-3-carbonitrile unit employing dialkyl acetone-1, 3-dicarboxylates. Synth Commun 48:582–587. https://doi.org/10.1080/00397911.2017.1416143

    Article  CAS  Google Scholar 

  65. Shaabani A, Ghadari R, Ghasemi S, Pedarpour M, Rezayan AH, Sarvary A, Ng SW (2009) Novel one-pot three-and pseudo-five-component reactions: synthesis of functionalized benzo [g]-and dihydropyrano [2,3-g] chromene derivatives. J Comb Chem 11:956–959. https://doi.org/10.1021/cc900101w

    Article  CAS  Google Scholar 

  66. Larionova NA, Zubarev AA, Rodinovskaya LA, Shestopalov AM (2013) New method for the synthesis of substituted thieno [3,2-b] pyridines and 5H-pyrano [2,3-d] thieno [3,2-b] pyridines derived from them. Russ Chem Bull 62:1304–1306. https://doi.org/10.1007/s11172-013-0182-2

    Article  CAS  Google Scholar 

  67. Litvinov YM, Shestopalov AA, Rodinovskaya LA, Shestopalov AM (2009) New convenient four-component synthesis of 6-amino-2, 4-dihydropyrano [2,3-c] pyrazol-5-carbonitriles and one-pot synthesis of 6′-aminospiro [(3H)-indol-3,4′-pyrano [2,3-c] pyrazol]-(1H)-2-on-5′-carbonitriles. J Comb Chem 11:914–919. https://doi.org/10.1021/cc900076j

    Article  CAS  Google Scholar 

  68. Shestopalov AM, Litvinov YM, Rodinovskaya LA, Malyshev OR, Semenova MN, Semenov VV (2012) Polyalkoxy substituted 4H-chromenes: synthesis by domino reaction and anticancer activity. ACS Comb Sci 14:484–490. https://doi.org/10.1021/co300062e

    Article  CAS  Google Scholar 

  69. Ahmad S, Jalil S, Zaib S, Aslam S, Ahmad M, Rasul A, Arshad MN, Sultan S, Hameed A, Asiri AM, Iqbal J (2019) Synthesis, X-ray crystal and monoamine oxidase inhibitory activity of 4, 6-dihydrobenzo [c] pyrano [2,3-e][1,2] thiazine 5,5-dioxides: In vitro studies and docking analysis. Eur J Pharm Sci 131:9–22. https://doi.org/10.1016/j.ejps.2019.02.007

    Article  CAS  Google Scholar 

  70. Mohareb RM, Abdo NY (2015) Synthesis and cytotoxic evaluation of pyran, dihydropyridine and thiophene derivatives of 3-acetylcoumarin. Chem Pharm Bull 63:678–687. https://doi.org/10.1248/cpb.c15-00115

    Article  CAS  Google Scholar 

  71. Azzam RA, Mohareb RM (2015) Multicomponent reactions of acetoacetanilide derivatives with aromatic aldehydes and cyanomethylene reagents to produce 4H-pyran and 1,4-dihydropyridine derivatives with antitumor activities. Chem Pharm Bull 63:1055–1064. https://doi.org/10.1248/cpb.c15-00685

    Article  CAS  Google Scholar 

  72. Mohareb R, MegallyAbdo N (2015) Uses of 3-(2-bromoacetyl)-2H-chromen-2-one in the synthesis of heterocyclic compounds incorporating coumarin: synthesis, characterization and cytotoxicity. Molecules 20:11535–11553. https://doi.org/10.3390/molecules200611535

    Article  CAS  Google Scholar 

  73. Padmaja P, Rao GK, Indrasena A, Reddy BV, Patel N, Shaik AB, Reddy N, Dubey PK, Bhadra MP (2015) Synthesis and biological evaluation of novel pyrano [3,2-c] carbazole derivatives as anti-tumor agents inducing apoptosis via tubulin polymerization inhibition. Org Biomol Chem 13:1404–1414. https://doi.org/10.1039/C4OB02015D

    Article  CAS  Google Scholar 

  74. Costa M, Areias F, Abrunhosa L, Venâncio A, Proença F (2008) The condensation of salicylaldehydes and malononitrile revisited: synthesis of new dimeric chromene derivatives. J Org Chem 73:1954–1962. https://doi.org/10.1021/jo702552f

    Article  CAS  Google Scholar 

  75. Kalalbandi VK, Bijjaragi SC, Seetharamappa J (2018) multicomponent synthesis and antimicrobial activity of dihydropyran-bis coumarins. ChemistrySelect 3:3925–3929. https://doi.org/10.1002/slct.201800335

    Article  CAS  Google Scholar 

  76. Upadhyay KD, Dodia NM, Khunt RC, Chaniara RS, Shah AK (2018) Synthesis and biological screening of pyrano [3,2-c] quinoline analogues as anti-inflammatory and anticancer agents. ACS Med Chem Lett 9:283–288. https://doi.org/10.1021/acsmedchemlett.7b00545

    Article  CAS  Google Scholar 

  77. Wu B, Gao X, Yan Z, Huang WX, Zhou YG (2015) Enantioselective synthesis of functionalized 2-amino-4H-chromenes via the o-quinone methides generated from 2-(1-tosylalkyl) phenols. Tetrahedron Lett 56:4334–4338. https://doi.org/10.1016/j.tetlet.2015.05.076

    Article  CAS  Google Scholar 

  78. Ding D, Zhao CG (2010) Organocatalyzed synthesis of 2-amino-8-oxo-5,6,7,8-tetrahydro-4H-chromene-3-carbonitriles. Tetrahedron Lett 51:1322–1325. https://doi.org/10.1016/j.tetlet.2009.12.139

    Article  CAS  Google Scholar 

  79. Wang DC, Xie YM, Fan C, Yao S, Song H (2014) Efficient and mild cyclization procedures for the synthesis of novel 2-amino-4H-pyran derivatives with potential antitumor activity. Chin Chem Lett 25:1011–1013. https://doi.org/10.1016/j.cclet.2014.04.026

    Article  CAS  Google Scholar 

  80. Esmati N, Foroughian M, Saeedi M, Mahdavi M, Khoshneviszadeh M, Firuzi O, Tanideh N, Miri R, Edraki N, Shafiee A, Foroumadi A (2015) Synthesis and cytotoxic activity of some novel dihyrobenzo [h] pyrano [3,2-c] chromene derivatives. J Heterocycl Chem 52:97–104. https://doi.org/10.1002/jhet.1991

    Article  CAS  Google Scholar 

  81. Lu Y, Yan Y, Wang L, Wang X, Gao J, Xi T, Wang Z, Jiang F (2017) Design, facile synthesis and biological evaluations of novel pyrano [3,2-a] phenazine hybrid molecules as antitumor agents. Eur J Med Chem 127:928–943. https://doi.org/10.1016/j.ejmech.2016.10.068

    Article  CAS  Google Scholar 

  82. Nikookar H, Mohammadi-Khanaposhtani M, Imanparast S, Faramarzi MA, Ranjbar PR, Mahdavi M, Larijani B (2018) Design, synthesis and in vitro α-glucosidase inhibition of novel dihydropyrano [3,2-c] quinoline derivatives as potential anti-diabetic agents. Bioorg Chem 77:280–286. https://doi.org/10.1016/j.bioorg.2018.01.025

    Article  CAS  Google Scholar 

  83. Gao Y, Du DM (2013) Facile synthesis of chiral 2-amino-4-(indol-3-yl)-4H-chromene derivatives using thiourea as the catalyst. Tetrahedron Asymmetry 24:1312–1317. https://doi.org/10.1016/j.tetasy.2013.08.018

    Article  CAS  Google Scholar 

  84. Hu ZP, Lou CL, Wang JJ, Chen CX, Yan M (2011) Organocatalytic conjugate addition of malononitrile to conformationally restricted dienones. J Org Chem 76:3797–3804. https://doi.org/10.1021/jo200112r

    Article  CAS  Google Scholar 

  85. Cui L, Wang Y, Zhou Z (2016) Enantioselective synthesis of 7H-pyrano [2,3-d] thiazoles via squaramide-catalyzed [2 + 4] annulation of malononitrile and 5-ylidenethiazol-4-ones. Tetrahedron Asymmetry 27:1056–1061. https://doi.org/10.1016/j.tetasy.2016.08.014

    Article  CAS  Google Scholar 

  86. Chen WB, Wu ZJ, Pei QL, Cun LF, Zhang XM, Yuan WC (2010) Highly enantioselective construction of spiro [4H-pyran-3,3′-oxindoles] through a domino Knoevenagel/Michael/cyclization sequence catalyzed by cupreine. Org Lett 12:3132–3135. https://doi.org/10.1021/ol1009224

    Article  CAS  Google Scholar 

  87. Youseftabar-Miri L (2019) A clean and efficient synthesis of spiro [4H-pyran-oxindole] derivatives catalyzed by egg shell. Iran Chem Commun 7:142–152

    CAS  Google Scholar 

  88. Bhosale HD, Shisodia SU, Ingle RD, Kendrekar PS, Shisodia AU, Kótai L, Pawar RP (2018) An expeditious and green approach for the synthesis of 2-amino-4H-chromenes using a catalyst of natural origin. Eur Chem Bull 7:120–122. https://doi.org/10.17628/ecb.2018.7.120-122

    Article  CAS  Google Scholar 

  89. Hatamjafari F (2016) Glutamic acid as an environmentally friendly catalyst for one-pot synthesis of 4H-chromene derivatives and biological activity. J Chem Health Risks 6:133–142

    CAS  Google Scholar 

  90. Valekar NJ, Patil PP, Gore AH, Kolekar GB, Deshmukh MB, Anbhule PV (2015) Sequence selective michael addition for synthesis of indeno-pyridine and indeno-pyran derivatives in one-pot reaction using CuO nanoparticles in water. J Heterocycl Chem 52:1669–1676. https://doi.org/10.1002/jhet.2228

    Article  CAS  Google Scholar 

  91. Paul S, Bhattacharyya P, Das AR (2011) One-pot synthesis of dihydropyrano [2,3-c] chromenes via a three component coupling of aromatic aldehydes, malononitrile, and 3-hydroxycoumarin catalyzed by nano-structured ZnO in water: a green protocol. Tetrahedron Lett 52:4636–4641. https://doi.org/10.1016/j.tetlet.2011.06.101

    Article  CAS  Google Scholar 

  92. Rajesh UC, Wang J, Prescott S, Tsuzuki T, Rawat DS (2014) RGO/ZnO nanocomposite: an efficient, sustainable, heterogeneous, amphiphilic catalyst for synthesis of 3-substituted indoles in water. ACS Sustain Chem Eng 3:9–18. https://doi.org/10.1021/sc500594w

    Article  CAS  Google Scholar 

  93. Ghashang M (2016) ZnAl2O4–Bi2O3 composite nano-powder as an efficient catalyst for the multi-component, one-pot, aqueous media preparation of novel 4H-chromene-3-carbonitriles. Res Chem Intermed 42:4191–4205. https://doi.org/10.1007/s11164-015-2269-x

    Article  CAS  Google Scholar 

  94. Azarifar D, Ghaemi M, Golbaghi M, Karamian R, Asadbegy M (2016) Synthesis and biological evaluation of new pyranopyridine derivatives catalyzed by guanidinium chloride-functionalized γ-Fe2O3/HAp magnetic nanoparticles. RSC Adv 6:92028–92039. https://doi.org/10.1039/C6RA15781E

    Article  CAS  Google Scholar 

  95. Pourian E, Javanshir S, Dolatkhah Z, Molaei S, Maleki A (2018) Ultrasonic-assisted preparation, characterization, and use of novel biocompatible core/shell Fe3O4@GA@isinglass in the synthesis of 1, 4-dihydropyridine and 4 H-pyran derivatives. ACS Omega 3:5012–5020. https://doi.org/10.1021/acsomega.8b00379

    Article  CAS  Google Scholar 

  96. Azarifar D, Mahmoudi-GomYek S, Ghaemi M (2018) Immobilized Cu (II) Schiff base complex supported on Fe3O4 magnetic nanoparticles: a highly efficient and reusable new catalyst for the synthesis of pyranopyridine derivatives. Appl Organomet Chem 32:e4541. https://doi.org/10.1002/aoc.4541

    Article  CAS  Google Scholar 

  97. Maleki A, Azizi M, Emdadi Z (2018) A novel poly (ethyleneoxide)-based magnetic nanocomposite catalyst for highly efficient multicomponent synthesis of pyran derivatives. Green Chem Lett Rev 11:573–582. https://doi.org/10.1080/17518253.2018.1547795

    Article  CAS  Google Scholar 

  98. Eftekhari-Sis B, Sarvari Karajabad M, Haqverdi S (2017) Pyridylmethylaminoacetic acid functionalized Fe3O4 magnetic nanorods as an efficient catalyst for the synthesis of 2-aminochromene and 2-aminopyran derivatives. Sci Iran 24:3022–3031

    Google Scholar 

  99. Solhy A, Elmakssoudi A, Tahir R, Karkouri M, Larzek M, Bousmina M, Zahouily M (2010) Clean chemical synthesis of 2-amino-chromenes in water catalyzed by nanostructured diphosphate Na2CaP2O7. Green Chem 12:2261–2267. https://doi.org/10.1039/C0GC00387E

    Article  CAS  Google Scholar 

  100. Sagar Vijay Kumar P, Suresh L, Vinodkumar T, Reddy BM, Chandramouli GV (2016) Zirconium doped ceria nanoparticles: an efficient and reusable catalyst for a green multicomponent synthesis of novel Phenyldiazenyl–chromene derivatives using aqueous medium. ACS Sustain Chem Eng 4:2376–2386. https://doi.org/10.1021/acssuschemeng.6b00056

    Article  CAS  Google Scholar 

  101. Baghbanian SM, Rezaei N, Tashakkorian H (2013) Nanozeolite clinoptilolite as a highly efficient heterogeneous catalyst for the synthesis of various 2-amino-4 H-chromene derivatives in aqueous media. Green Chem 15:3446–3458. https://doi.org/10.1039/C3GC41302K

    Article  CAS  Google Scholar 

  102. Mostafa EA, Khatab TK (2018) Silica supported V2O5 as a catalyst promoted the synthesis of 4h-pyrans through multicomponent reaction under solvent free conditions. Org Chem Indian J 14:1–6

    Google Scholar 

  103. Kumar GS, Zeller M, Frasso MA, Prasad KJ (2015) InCl3 promoted synthesis of pyrano [3,2-h] quinolines via microwave irradiation. J Heterocycl Chem 52:926–930. https://doi.org/10.1002/jhet.2067

    Article  CAS  Google Scholar 

  104. Shanthi G, Perumal PT (2007) An eco-friendly synthesis of 2-aminochromenes and indolyl chromenes catalyzed by InCl3 in aqueous media. Tetrahedron Lett 48:6785–6789. https://doi.org/10.1016/j.tetlet.2007.07.102

    Article  CAS  Google Scholar 

  105. Lakshmi NV, Kiruthika SE, Perumal PT (2011) A rapid and efficient access to 4-substituted 2-amino-4H-chromenes catalyzed by InCl3. Synlett 2011:1389–1394

    Article  Google Scholar 

  106. Yamuna E, Rajendra Prasad KJ (2014) InCl3-assisted synthesis of pyrano [2,3-a] carbazoles via multicomponent reaction. Synth Commun 44:2656–2661. https://doi.org/10.1080/00397911.2014.910526

    Article  CAS  Google Scholar 

  107. Heravi MM, Daraie M (2014) Heterogeneous catalytic three-component one-pot synthesis of novel 8H-[1,3] dioxolo [4,5-g] chromenes by basic alumina in water. Monatshefte Chem Chem Mon 145:1479–1482. https://doi.org/10.1007/s00706-014-1201-1

    Article  CAS  Google Scholar 

  108. Pasdar H, Foroughifar N, Hedayati Saghavaz B (2015) Investigation into the antibacterial activity of metal complexes derived from substituted chromone in comparison with tetracycline, and cephradine as standard drugs against Escherichia coli and Staphylococcus aureus. J Med Microbiol Infect Dis 3:75–79

    Google Scholar 

  109. Jabbarzarea S, Ghashangb M (2015) Na2O–Al2O3–P2O5 glass-ceramic system: efficient catalyst for the aqueous media preparation of pyrano [2,3-e] benzoxazole derivatives. Lett Org Chem 12:713–719. https://doi.org/10.1002/chin.201611070

    Article  CAS  Google Scholar 

  110. Ballini R, Bosica G, Conforti ML, Maggi R, Mazzacani A, Righi P, Sartori G (2001) Three-component process for the synthesis of 2-amino-2-chromenes in aqueous media. Tetrahedron 57:1395–1398. https://doi.org/10.1016/S0040-4020(00)01121-2

    Article  CAS  Google Scholar 

  111. Khurana JM, Magoo D, Chaudhary A (2012) Efficient and green approaches for the synthesis of 4 H-Benzo [g] chromenes in water, under neat conditions, and using task-specific ionic liquid. Synth Commun 42:3211–3219. https://doi.org/10.1080/00397911.2011.580069

    Article  CAS  Google Scholar 

  112. Haouchine AL, Kabri Y, Bakhta S, Curti C, Nedjar-Kolli B, Vanelle P (2018) Simple synthesis of imidazo [1,2-A] pyridine derivatives bearing 2-aminonicotinonitrile or 2-aminochromene moiety. Synth Commun 48:2159–2168. https://doi.org/10.1080/00397911.2018.1479759

    Article  CAS  Google Scholar 

  113. Ren Y, Yang B, Liao X (2016) The amino side chains do matter: chemoselectivity in the one-pot three-component synthesis of 2-amino-4 H-chromenes by supramolecular catalysis with amino-appended β-cyclodextrins (ACDs) in water. Catal Sci Technol 6:4283–4293. https://doi.org/10.1039/C5CY01888A

    Article  CAS  Google Scholar 

  114. Fan X, Feng D, Qu Y, Zhang X, Wang J, Loiseau PM, Andrei G, Snoeck R, De Clercq E (2010) Practical and efficient synthesis of pyrano [3,2-c] pyridone, pyrano [4,3-b] pyran and their hybrids with nucleoside as potential antiviral and antileishmanial agents. Bioorg Med Chem Lett 20:809–813. https://doi.org/10.1016/j.bmcl.2009.12.102

    Article  CAS  Google Scholar 

  115. Li Y, Zhao B, Du B, Jiang Q, Wang X, Cao C (2013) Efficient and mild one-pot three-component reaction to synthesize pyrano [3,2-b] pyran derivatives in ionic liquid. Tetrahedron Lett 54:227–230. https://doi.org/10.1016/j.tetlet.2012.11.006

    Article  CAS  Google Scholar 

  116. Abbaspour-Gilandeh E, Azimi SC, Rad-Moghadam K, Mohammadi-Barkchai A (2013) A green, efficient, and rapid procedure for the synthesis of pyrano [3,2-c] quinoline and pyrano [3,2-c] pyridone derivatives catalyzed by [BMIm] Cl. Iran J Catal 3:15–20

    CAS  Google Scholar 

  117. Tashrifi Z, Rad-Moghadam K, Mehrdad M (2017) Catalytic performance of a new Brønsted acidic oligo (ionic liquid) in efficient synthesis of pyrano [3,2-c] quinolines and pyrano [2,3-d] pyrimidines. J Mol Liq 248:278–285. https://doi.org/10.1016/j.molliq.2017.10.065

    Article  CAS  Google Scholar 

  118. Mane VU, Chavan SM, Choudhari BR, Mane DV (2019) Microwave assisted synthesis of tetrahydrobenzo[b]pyrans via one pot multicomponent reaction using [Et3NH][HSO4] as ionic liquid catalyst. J Pharm Chem Biol Sci 6:311–319

    Google Scholar 

  119. Bhupathi R, Madhu B, Devi BR, Reddy CV, Dubey PK (2016) DBU acetate mediated: one-pot multi component syntheses of dihydropyrano [3,2-c] quinolones. J Heterocycl Chem 53:1911–1916. https://doi.org/10.1002/jhet.2506

    Article  CAS  Google Scholar 

  120. Rajesh UC, Kholiya R, Thakur A, Rawat DS (2015) [TBA][Gly] ionic liquid promoted multi-component synthesis of 3-substituted indoles and indolyl-4H-chromenes. Tetrahedron Lett 56:1790–1793. https://doi.org/10.1016/j.tetlet.2015.02.058

    Article  CAS  Google Scholar 

  121. Reddy GM, Garcia JR, Zyryanov GV, Sravya G, Reddy NB (2019) Pyranopyrazoles as efficient antimicrobial agents: green, one pot and multicomponent approach. Bioorg Chem 82:324–331. https://doi.org/10.1016/j.bioorg.2018.09.035

    Article  CAS  Google Scholar 

  122. Safaei HR, Shekouhy M, Rahmanpur S, Shirinfeshan A (2012) Glycerol as a biodegradable and reusable promoting medium for the catalyst-free one-pot three component synthesis of 4H-pyrans. Green Chem 14:1696–1704. https://doi.org/10.1039/C2GC35135H

    Article  CAS  Google Scholar 

  123. Zonouz AM, Eskandari I, Khavasi HR (2012) A green and convenient approach for the synthesis of methyl 6-amino-5-cyano-4-aryl-2, 4-dihydropyrano [2,3-c] pyrazole-3-carboxylates via a one-pot, multi-component reaction in water. Tetrahedron Lett 53:5519–5522. https://doi.org/10.1016/j.tetlet.2012.08.010

    Article  CAS  Google Scholar 

  124. Zhang M, Fu QY, Gao G, He HY, Zhang Y, Wu YS, Zhang ZH (2017) Catalyst-free, visible-light promoted one-pot synthesis of spirooxindole-pyran derivatives in aqueous ethyl lactate. ACS Sustain Chem Eng 5:6175–6182

    Article  CAS  Google Scholar 

  125. Makarem S, Mohammadi AA, Fakhari AR (2008) Tetrahedron Lett 49:7194–7196. https://doi.org/10.1021/acssuschemeng.7b01102

    Article  CAS  Google Scholar 

  126. Sharma S, Sharma K, Ojha R, Kumar D, Singh G, Nepali K, Bedi PM (2014) Microwave assisted synthesis of naphthopyrans catalysed by silica supported fluoroboric acid as a new class of non purine xanthine oxidase inhibitors. Bioorg Med Chem Lett 24:495–500. https://doi.org/10.1016/j.bmcl.2013.12.031

    Article  CAS  Google Scholar 

  127. Pacher PA, Nivorozhkin A, Szabó C (2006) Therapeutic effects of xanthine oxidase inhibitors: renaissance half a century after the discovery of allopurinol. Pharmacol Rev 58:87–114. https://doi.org/10.1124/pr.58.1.6

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research was supported by a grant from Iran National Science Foundation (INSF).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Samira Ansari or Mohammad Mahdavi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tashrifi, Z., Mohammadi-Khanaposhtani, M., Hamedifar, H. et al. Synthesis and pharmacological properties of polysubstituted 2-amino-4H-pyran-3-carbonitrile derivatives. Mol Divers 24, 1385–1431 (2020). https://doi.org/10.1007/s11030-019-09994-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11030-019-09994-9

Keywords

Navigation