Skip to main content
Log in

On the information expressed in enzyme primary structure: lessons from Ribonuclease A

  • Full-Length Paper
  • Published:
Molecular Diversity Aims and scope Submit manuscript

Abstract

The information expressed in an enzyme’s primary structure is investigated. Brownian computations are directed at Ribonuclease A (RNase A) so as to quantify the information at the atom/covalent bond level. The information content and distribution are crucial because the primary structure underpins the molecule’s chemical functions. Brownian computation data are illustrated for the native protein, mutants, and sequence isomers. The results identify signature features of the active protein on new information grounds. The same tools offer rapid screening of proteins and polypeptides whereby several examples are illustrated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

Abbreviations

PDB:

Protein data bank

RNase A:

Ribonuclease A

RNA:

Ribonucleic acid

QSAR:

Quantitative structure activity relation

CI:

Correlated information

MI:

Mutual information

References

  1. Smyth DG, Stein WH, Moore S (1963) The sequence of amino acid residues in bovine pancreatic ribonuclease: revisions and confirmations. J Biol Chem 238: 227–234

    CAS  Google Scholar 

  2. Anfinsen CB (1973) Principles that govern the folding of protein chains. Science 181: 223–230. doi:10.1126/science.181.4096.223

    Article  CAS  PubMed  Google Scholar 

  3. Raines RT (1998) Ribonuclease A. Chem Rev 98: 1045–1066. doi:10.1021/cr960427h

    Article  CAS  PubMed  Google Scholar 

  4. Scheraga HA, Wedemeyer WJ, Welker E (2001) Bovine pancreatic Ribonuclease A: oxidative and conformational folding studies. Method Enzymol 341: 189–221

    Article  CAS  Google Scholar 

  5. Marshall GR, Feng JA, Kuster DJ (2008) Back to the future: Ribonuclease A. Pept Sci 90: 259–277. doi:10.1002/bip.20845

    CAS  Google Scholar 

  6. Graham DJ, Malarkey C, Schulmerich MV (2004) Information content in organic molecules: quantification and statistical structure via Brownian processing. J Chem Inf Comput Sci 44: 1601–1611. doi:10.1021/ci0400213

    CAS  PubMed  Google Scholar 

  7. Graham DJ, Schulmerich MV (2004) Information content in organic molecules: reaction pathway analysis via Brownian processing. J Chem Inf Comput Sci 44: 1612–1622. doi:10.1021/ci040022v

    CAS  PubMed  Google Scholar 

  8. Graham DJ (2005) Information content and organic molecules: aggregation states and solvent effects. J Chem Inf Model 45: 1223–1236. doi:10.1021/ci050101m

    Article  CAS  PubMed  Google Scholar 

  9. Graham DJ (2007) Information content in organic molecules: Brownian processing at low levels. J Chem Inf Model 47: 376–389. doi:10.1021/ci600488x

    Article  CAS  PubMed  Google Scholar 

  10. Aguero-Chapin G, Gonzalez-Diaz H, de la Riva G, Rodriguez W, Sanches-Rodriguez A, Podda G, Vasquez-Patron RI (2008) MMM-QSAR recognition of ribonucleases without alignment: comparison with an HMMM model and isolation from Schizosaccharomyces pombe, prediction and experimental assay of a new sequence. J Chem Inf Model 48: 434–448. doi:10.1021/ci7003225

    Article  PubMed  Google Scholar 

  11. González-Díaz H, Dea-Ayuela MA, Pérez-Montoto LG, Prado-Prado FJ, Agüero-Chapín G, Bolas-Fernández F et al. (2009) QSAR for RNases and theoretic-experimental study of molecular diversity on peptide mass fingerprints of a new Leishmania infantum protein. Mol Divers. doi:10.1007/s11030-009-9178-0

  12. González-Díaz H, Saiz-Urra L, Molina R, Santana L, Uriarte E (2007) A model for the recognition of protein kinases based on the entropy of 3D van der Waals interactions. J Proteome Res 6: 904–908. doi:10.1021/pr060493s

    Article  PubMed  Google Scholar 

  13. Cruz-Monteagudo M, González-Díaz H, Borges F, Dominguez ER, Cordeiro MN (2008) 3D-MEDNEs: an alternative “in Silico” technique for chemical research in toxicology. 2. Quantitative proteome-toxicity relationships (QPTR) based on mass spectrum spiral entropy. Chem Res Toxicol 21: 619–632. doi:10.1021/tx700296t

    Article  CAS  PubMed  Google Scholar 

  14. González-Díaz H, Vilar S, Santana L, Uriarte E (2007) Medicinal chemistry and bioinformatics—current trends in drugs discovery with networks topological indices. Curr Top Med Chem 7: 1025–1039

    Article  Google Scholar 

  15. Agrawal VK, Khadikar PV (2003) Modelling of carbonic anhydrase inhibitory activity of sulfonamides using molecular negentropy. Bioorg Med Chem Lett 13: 447–453. doi:10.1016/S0960-894X(02)00954-X

    Article  CAS  PubMed  Google Scholar 

  16. Kier LB (1980) Use of molecular negentropy to encode structure governing biological activity. J Pharm Sci 69: 807–810. doi:10.1002/jps.2600690717

    Article  CAS  PubMed  Google Scholar 

  17. Gonzalez-Diaz H, Prado-Prado F, Ubeira FM (2008) Predicting antimicrobial drugs and targets with the MARCH-INSIDE approach. Curr Top Med Chem 8: 1676–1690

    Article  CAS  PubMed  Google Scholar 

  18. Godden JW, Stahura FL, Bajorath J (2000) Variability of molecular descriptors in compound databases revealed by Shannon entropy calculations. J Chem Inf Comput Sci 40: 796–800. doi:10.1021/ci000321u

    CAS  PubMed  Google Scholar 

  19. Stahura FL, Godden JW, Xue L, Bajorath J (2000) Distinguishing between natural products and synthetic molecules by descriptor Shannon entropy analysis and binary QSAR calculations. J Chem Inf Comput Sci 40: 1245–1252. doi:10.1021/ci0003303

    CAS  PubMed  Google Scholar 

  20. Beintema JJ, Fitch WM, Carsana A (1986) Molecular evolution of pancreatic-type ribonucleases. Mol Biol Evol 3: 262–275

    CAS  PubMed  Google Scholar 

  21. Dyer KD, Rosenberg HF (2006) The RNase a superfamily: generation of diversity and innate host defense. Mol Divers 10: 585–597. doi:10.1007/s11030-006-9028-2

    Article  CAS  PubMed  Google Scholar 

  22. Fisher BM, Schultz LW, Raines RT (1998) Coulombic effects of remote subsites on the active site of Ribonuclease A. Biochemistry 37: 17386–17401. doi:10.1021/bi981369s

    Article  CAS  PubMed  Google Scholar 

  23. Pearson MA, Karplus PA, Dodge RW, Laity JH, Scheraga HA (1998) Crystal structures of two mutants that have implications for the folding of bovine pancreatic Ribonuclease A. Protein Sci 7: 1255–1258

    Article  CAS  PubMed  Google Scholar 

  24. Park C, Schultz LW, Raines RT (2001) Contribution of the active site histidine residues of Ribonuclease A to nucleic acid binding. Biochemistry 40: 4949–4956. doi:10.1021/bi0100182

    Article  CAS  PubMed  Google Scholar 

  25. Bennett CH (1982) Thermodynamics of computation—a review. Intl J Theo Phys 21: 905–940. doi:10.1007/BF02084158

    Article  CAS  Google Scholar 

  26. Feynman RP (1996) Feynman lectures on computation. In: Hey AJG, Allen RW (eds). Addison-Wesley, Reading, MA

  27. Brillouin L (1956) Science and information theory. Academic, New York

    Google Scholar 

  28. Garrett PB (2004) The mathematics of coding theory: information compression, error correction, and finite fields. Pearson/Prentice-Hall, Upper Saddle River, NJ

    Google Scholar 

  29. Bodansky M, Ondetti MA (1966) Peptide synthesis. Interscience, New York

    Google Scholar 

  30. Gutte B, Merrifield RB (1969) Total synthesis of an enzyme with Ribonuclease A activity. J Am Chem Soc 91: 501–502. doi:10.1021/ja01030a050

    Article  CAS  PubMed  Google Scholar 

  31. Denkewalter RG, Veber DF, Holly FW, Hirschmann R (1969) Total synthesis of an enzyme. I. Objective and strategy. J Am Chem Soc 91: 502–503. doi:10.1021/ja0103a051

    Article  CAS  Google Scholar 

  32. Scheraga HA, Khalili M, Liwo A (2007) Protein folding dynamics: overview of molecular simulation techniques. Ann Rev Phys Chem 58: 57–83. doi:10.1146/annurev.physchem.58.032806.104614

    Article  CAS  Google Scholar 

  33. Zeldovich KB, Shakhnovich EI (2008) Understanding protein evolution: from protein physics to Darwin selection. Ann Rev Phys Chem 59: 105–127. doi:10.1146/annurev.physchem.58.032806.104449

    Article  CAS  Google Scholar 

  34. Meyerguz L, Kleinberg J, Elber R (2007) The network of sequence flow between protein structures. Proc Natl Acad Sci USA 104: 11627–11632. doi:10.1073/pnas.0701393104

    Article  CAS  PubMed  Google Scholar 

  35. Agrafiotis DK, Myslik JC, Salemme FR (1999) Advances in diversity profiling and combinatorial series design. Mol Divers 4: 1–22. doi:10.1023/A:1009636310640

    Article  CAS  Google Scholar 

  36. Langedijk JPM, Olijhoek T, Schut D, Autar R, Meloen RH (2004) New transport peptides broaden the horizon of applications for peptidic pharmaceuticals. Mol Divers 8: 101–111. doi:10.1023/B:MODI.0000025653.26130.ce

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel J. Graham.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Graham, D.J., Greminger, J.L. On the information expressed in enzyme primary structure: lessons from Ribonuclease A. Mol Divers 14, 673–686 (2010). https://doi.org/10.1007/s11030-009-9211-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11030-009-9211-3

Keywords

Navigation