Skip to main content
Log in

Thermotolerance in Fungi: The Role of Heat Shock Proteins and Trehalose

  • Review
  • Published:
Microbiology Aims and scope Submit manuscript

Abstract

The parallel synthesis of heat shock proteins and trehalose in response to heat shock did not allow the role of these compounds in the acquisition of thermotolerance by fungal cells to be established for a long time. This review analyses experimental data obtained with the use of mutant fungal strains and shows differences in the thermoprotective functions of trehalose and heat shock proteins in relation to cell membranes and macromolecules. The main emphasis has been placed on data demonstrating the thermoprotective role of trehalose in fungi, the present-day understanding of its biological functions, and mechanisms of trehalose interaction with subcellular structures and cell macromolecules.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Piper, P.W., Molecular Events Associated with Acquisition of Heat Tolerance by the Yeast Saccharomyces cerevisiae, FEMS Microbiol. Rev., 1993, vol. 11, pp. 339–356.

    Google Scholar 

  2. Mager, W.H. and De Kruijff, A.J.J., Stress-Induced Transcriptional Activation, Microbiol. Rev., 1995, vol. 59, no.3, pp. 506–531.

    Google Scholar 

  3. Plesofsky-Vig, N., The Heat-Shock Protein and Stress Response, The Mycota. III Biochemistry and Molecular Biology, Brambl, R. and Marzluf, G.A, Eds., Berlin: Springer, 1996, pp. 171–190.

    Google Scholar 

  4. Evstigneeva, Z.G., Solov’eva, N.A., and Sidel’nikova, L.I., Structure and Function of Chaperons and Chaperonines, Prikl. Biokhim. Mikrobiol., 2001, vol. 37, no.1, pp. 5–18.

    Google Scholar 

  5. Gusev, N.B., Bogacheva, N.V., and Marston, S.B., Structure and Properties of Small Heat Shock Proteins (sHSR) and Their Interaction with the Cytoskeleton Proteins, Biokhimiya, 2002, vol. 67, pp. 613–623.

    Google Scholar 

  6. Reinders, A., Burckert, N., Hohman, S., Thevelein, J.M., Boller, T., Wiemken, A., and De Virgilio, C., Structural Analysis of the Subunits of the Trehalose-6-Phosphate Synthase/Phosphatase Complex in Saccharomyces cerevisiae and Their Function during Heat Shock, Mol. Microbiol., 1997, vol. 24, no.4, pp. 687–695.

    Google Scholar 

  7. Bell, W., Sun, W., Hohman, S., Wera, S., Reinders, A., De Virgilio, C., Wiemken, A., and Thevelein, J.M., Composition and Functional Analysis of the Saccharomyces cerevisiae Trehalose Synthase Complex, J. Biol. Chem., 1998, vol. 273, no.11, pp. 33311–33319.

    Google Scholar 

  8. Blazquez, M.A., Lagunas, R., Gancedo, C., and Gancedo, J.M., Trehalose-6-Phosphate, a New Regulator of Yeast Glycolysis That Inhibits Hexokinases, FEBS Lett., 1993, vol. 329, nos.1/2, pp. 51–54.

    Google Scholar 

  9. Thevelein, J.M. and Hohman, S., Trehalose Synthase: Guard to the Gate of Glycolysis in Yeast?, Trends Biol. Sci., 1995, vol. 20, no.1, pp. 3–10.

    Google Scholar 

  10. Bell, W., Klaassen, P., Ohnacker, M., Boller, T., Herweijer, M., Schoppink, P., van der Zee, P., and Wiemken, A., Characterization of the 56-KDa Subunit of the Yeast Trehalose-6-Phosphate Synthase and Cloning of Its Gene Reveals Its Identity with the Product of CIF1, a Regulator of Carbon Catabolite Inactivation, Eur. J. Biochem., 1992, vol. 209, pp. 951–959.

    Google Scholar 

  11. De Virgilio, C., Hottiger, T., Dominguez, J., Boller, T., and Wiemken, A., The Role of Trehalose Synthesis for the Acquisition of Thermotolerance in Yeast: 1. Genetic Evidence That Trehalose Is a Thermoprotectant, Eur. J. Biochem., 1994, vol. 219, pp. 179–186.

    Google Scholar 

  12. Singer, M.A. and Lindquist, S., Multiple Effect of Trehalose on Protein Folding In Vitro and In Vivo, Mol. Cell, 1998, vol. 1, pp. 639–648.

    Google Scholar 

  13. Welch, W.J. and Brown, C.R., Influence of Molecular and Chemical Chaperones on Protein Folding, Cell Stress Chaperones, 1996, vol. 1, pp. 209–215.

    Google Scholar 

  14. Schlesinger, M.J., Heat Shock Proteins: The Search for Functions, J. Cell Biol., 1986, vol. 103, pp. 321–325.

    Google Scholar 

  15. Lindquist, S., The Heat-Shock Response, Annu. Rev. Biochem., 1986, vol. 55, pp. 1151–1191.

    Google Scholar 

  16. Sanchez, Y., Taulien, J., Borkovich, K.A., and Lindquist, S., HSP 104 Is Required for Tolerance to Many Forms of Stress, EMBO J., 1992, vol. 11, no.6, pp. 2357–2364.

    Google Scholar 

  17. Piper, P.W., Ortiz-Calderon, C., Holyoak, C., Coote, P., and Cole, M., HSP 30, the Integral Plasma Membrane Heat Shock Protein of Saccharomyces cerevisiae, Is a Stress-Inducible Regulator of Plasma Membrane H+-ATPase, Cell Stress Chaperones, 1997, vol. 2, no.1, pp. 12–24.

    Google Scholar 

  18. Zahringer, H., Burgert, M., Holzer, H., and Nwaka, S., Neutral trehalase Nth1 of Saccharomyces cerevisiae Encoded by the NTH1 Gene Is a Multiple Stress Responsive Protein, FEBS Lett., 1997, vol. 412, pp. 615–620.

    Google Scholar 

  19. Sorger, P.K., Heat Shock Factor and Heat Shock Response, Cell, 1991, vol. 65, pp. 363–366.

    Google Scholar 

  20. Werner-Washburne, M., Becker, J., and Kosic-Smithers, E.A., Jr., Yeast HSP 70 RNA Levels Vary in Response to the Physiological Status of the Cell, J. Bacteriol., 1989, vol. 171, no.5, pp. 2680–2688.

    Google Scholar 

  21. Horvath, I.L., Glatz, A., Varvasovszki, V., Torok, Z., Pali, T., Balogh, G., Kovacs, E., Nadasdi, L., and Vigh, L., Membrane Physical State Controls the Signaling Mechanism of the Heat Shock Response in Synechocystis PCC 6803: Identification of HSP 17 as a “Fluidity Gene”, Proc. Natl. Acad. Sci. USA, 1998, vol. 95, pp. 3513–3518.

    Google Scholar 

  22. Seymour, I.J. and Piper, P.W., Stress Induction of HSP 30, the Plasma Membrane Heat Shock Protein Gene of Saccharomyces cerevisiae, Appears Not To Use Known Stress-Regulated Transcription Factors, Microbiology, 1999, vol. 145, pp. 231–239.

    Google Scholar 

  23. Watt, R. and Piper, P.W., U14, the Polyubiquitin Gene of Saccharomyces cerevisiae, Is a Heat Shock Gene That Is Also Subject to Catabolite Derepression Control, Mol. Gen Genet, 1997, vol. 253, pp. 439–447.

    Google Scholar 

  24. Elbein, A.D., The Metabolism of α,α-Trehalose, Advances in Carbohydrate Chemistry, Wolfrom, M.L., Ed., New York: Academic, 1974, pp. 227–256.

    Google Scholar 

  25. Cabib, E. and Leloir, L., The Biosynthesis of Trehalose Phosphate, J. Biol. Chem., 1958, vol. 231, pp. 259–275.

    Google Scholar 

  26. Winderickx, J., De Winde, J.H., Crauwels, M., Hino, A., Hohman, S., Van Dijck, P., and Thevelein, J.M., Regulation of Genes Encoding Subunits of the Trehalose Synthase Complex in Saccharomyces cerevisiae: Novel Variation of STRE-Mediated Transcription Control?, Mol. Gen. Genet., 1996, vol. 252, pp. 470–482.

    Google Scholar 

  27. Vandercammen, A., Francois, J., and Hers, H.-G., Characterization of Trehalose-6-Phosphate Synthase and Trehalose-6-Phosphate Phosphatase of Saccharomyces cerevisiae, Eur. J. Biochem., 1989, vol. 182, pp. 613–620.

    Google Scholar 

  28. Panek, A.C., de Araujo, P.S., Moura Neto, V., and Panek, A.D., Regulation of the Trehalose-6-Phosphate Synthase Complex in Saccharomyces, Curr. Genet., 1987, vol. 11, pp. 459–465.

    Google Scholar 

  29. Francois, J. and Parrou, J.L., Reserve Carbohydrates Metabolism in the Yeast Saccharomyces cerevisiae, FEMS Microbiol. Rev., 2001, vol. 25, pp. 125–145.

    Google Scholar 

  30. Neves, M.-J., Francois, J., Jorge, J.A., and Terenzi, H.F., Effect of Heat Shock on the Level of Trehalose and Glycogen, and on the Induction of Thermotolerance in Neurospora crassa, FEBS Lett., 1991, vol. 283, no.1, pp. 19–22.

    Google Scholar 

  31. Thevelein, J.M., Regulation of trehalase Activity by Phosphorylation-Dephosphorylation during Developmental Transitions in Fungi, Exp. Mycol., 1988, vol. 12, pp. 1–12.

    Google Scholar 

  32. Bonini, B.M., Neves, M.J., Jorge, J.A., and Terenzi, H.F., Effect of Temperature Shifts on the Metabolism of Trehalose in Neurospora crassa Wild Type and trehalase-Deficient (Tre) Mutant. Evidence Against the Participation of Periplasmic trehalase in Catabolism of Intracellular Trehalose, Biochim. Biophys. Acta, 1995, vol. 1245, pp. 339–347.

    Google Scholar 

  33. d’Enfert, C., Bonini, B.M., Zapella, P.D.A., Fontaine, T., Silva, A.M., and Terenzi, H.F., Neutral Trehalases Catalyse Intracellular Trehalose Breakdown in the Filamentous Fungi Aspergillus nidulans and Neurospora crassa, Mol. Microbiol., 1999, vol. 32, no.3, pp. 471–482.

    Google Scholar 

  34. Soto, T., Fernandez, J., Vicente-Soler, J., Cansado, J., and Gacto, M., Posttranslational Control of trehalase Induced by Nutrients, Metabolic Inhibitors, and Physical Agents in Pachysolen tannophylus, Fungal Gen. Biol., 1996, vol. 20, pp. 143–151.

    Google Scholar 

  35. Thevelein, J.M., Van Laere, A.J., Beullens, M., Van Assche, J.A., and Carlier, A.R., Glucose-Induced trehalase Activation and Trehalose Mobilization during Early Germination of Phycomyces blakesleeanus Spores, J. Gen. Microbiol., 1983, vol. 129, pp. 719–726.

    Google Scholar 

  36. Lopez-Gallardo, Y., Garsia-Soto, J., Novoa-Martinez, G., and Martinez-Cadena, G., Membrane-Associated trehalase Activity in Phycomyces blakesleeanus Spores, Mycol. Res., 1995, vol. 99, no.11, pp. 1317–1320.

    Google Scholar 

  37. Arguelles, J.C. and Gacto, M., Differential Location of Regulatory and Nonregulatory trehalases in Candida utilis Cells, Antonie van Leeuwenhoek, 1988, vol. 54, pp. 555–565.

    Google Scholar 

  38. Hecker, L.I. and Sussman, A.S., Localization of trehalase in the Ascospores of Neurospora: Relation to Ascospores Dormancy and Germination, J. Bacteriol., 1973, vol. 115, no.2, pp. 592–599.

    Google Scholar 

  39. Crowe, J.H., Panek, A.D., Crowe, L.M., Panek, A.C., and de Araujo, P.D., Trehalose Transport in Yeast Cells, Biochem. Int., 1991, vol. 24, pp. 721–730.

    Google Scholar 

  40. Arguelles, J.C., Thermotolerance and Trehalose Accumulation Induced by Heat Shock in Yeast Cells of Candida albicans, FEMS Microbiol. Lett., 1997, vol. 146, pp. 65–71.

    Google Scholar 

  41. De Araujo, P.S. and Panek, A.D., The Interaction of Saccharomyces cerevisiae trehalase with Membranes, Biochim. Biophys. Acta, 1993, vol. 1148, pp. 303–307.

    Google Scholar 

  42. Zahringer, H., Thevelein, J.M., and Nwaka, S., Induction of Neutral trehalase Nth1 by Heat and Osmotic Stress Is Controlled by STRE Elements and Msn2/Msn4 Transcription Factors: Variation of PKA Effect during Stress and Growth, Mol. Microbiol., 2000, vol. 35, no.2, pp. 397–406.

    Google Scholar 

  43. Carrillo, D., Vicente-Soler, J., Fernandez, J., Soto, T., Cansado, J., and Gacto, M., Activation of Cytoplasmic trehalase by Cyclic-AMP-Independent Signalling Pathways in the Yeast Candida utilis, Microbiology, 1995, vol. 141, pp. 679–686.

    Google Scholar 

  44. Thevelein, J.M., Regulation of Trehalose Metabolism and Its Relevance to Cell Growth and Function, The Mycota. III. Biochemistry and Molecular Biology, Brambl, R. and Marzluf, G.A., Eds., Berlin: Springer, 1996, pp. 395–420.

    Google Scholar 

  45. Thevelein, J.M. and Beullens, M., Cyclic AMP and the Stimulation of trehalase Activity in the Yeast Saccharomyces cerevisiae by Carbon Sources, Nitrogen Sources and Inhibitors of Protein Synthesis, J. Gen. Microbiol., 1985, vol. 131, pp. 3199–3209.

    Google Scholar 

  46. Horikoshi, K. and Ikeda, Y., Trehalase in Conidia of Aspergillus oryzae, J. Bacteriol., 1966, vol. 91, no.5, pp. 1883–1887.

    Google Scholar 

  47. Feofilova, E.P., Retardation of Metabolic Activity as a Universal Biochemical Mechanism of Adaptation of Microorganisms to Stressful Impacts, Prikl. Biokhim. Mikrobiol., 2003, vol. 39, no.1, pp. 5–24.

    Google Scholar 

  48. Mandels, G.R., Vitols, R., and Parrish, F.M., Trehalose as an Endogenous Reserve in Spores of the Fungus Myrothecium verrucaria, J. Bacteriol., 1965, vol. 90, no.1, pp. 1589–1598.

    Google Scholar 

  49. Barton, J.K., Den Hollander, J.A., Hopfield, J.J., and Shulman, R.G., 13 C Nuclear Magnetic Resonance Study of Trehalose Mobilization in Yeast Spores, J. Bacteriol., 1982, vol. 151, no.1, pp. 177–185.

    Google Scholar 

  50. Tereshina, V.M., Polotebnova, M.V., and Feofilova, E.P., Trehalase Activity of the Spores of a Wild Strain of Cunninghamella japonica with a Reduced Capacity for Trehalose Synthesis, Mikrobiologiya, 1987, vol. 56, no.5, pp. 753–758.

    Google Scholar 

  51. Morozova, E.V., Kozlov, V.P., Tereshina, V.M., Memorskaya, A.S., and Feofilova, E.P., Changes in the Lipid and Carbohydrate Composition of Aspergillus niger Conidia in the Process of Germination, Prikl. Biokhim. Mikrobiol., 2002, vol. 38, no.2, pp. 149–154.

    Google Scholar 

  52. Van Doorn, J., Scholte, M.E., Postma, P.W., Van Driel, R., and Van Dam, K., Regulation of trehalase Activity during the Cell Cycle of Saccharomyces cerevisiae, J. Gen. Microbiol., 1988, vol. 134, pp. 785–790.

    Google Scholar 

  53. Feofilova, E.P., Tereshina, V.M., Garibova, L.V., Zav’yalova, L.A., Memorskaya, A.S., and Maryshova, N.S., Germination of Agaricus bisporus Basidiospores, Prikl. Biokhim. Mikrobiol., 2004, vol. 40, no.2, pp. 220–226.

    Google Scholar 

  54. Tereshina, V.M., Memorskaya, A.S., Morozova, E.V., Kozlov, V.P., and Feofilova, E.P., Alterations in the Carbohydrate Composition of the Cytosol of Fungal Spores Caused by Temperature Variations and the Storage Process, Mikrobiologiya, 2000, vol. 69, no.4, pp. 511–517.

    Google Scholar 

  55. Tereshina, V.M., Kovtunenko, A.V., Memorskaya, A.S., and Feofilova, E.P., Influence of the Carbohydrate Composition of the Cytosol of Aspergillus niger Conidia on Their Viability in during Storage, Prikl. Biokhim. Mikrobiol., 2004, vol. 40, no.5, pp. 527–532.

    Google Scholar 

  56. Feofilova, E.P., Tereshina, V.M., and Gornova, I.B., Changes in the Carbohydrate Composition of Fungal Cells Related to Adaptation to Temperature Stress, Mik-robiologiya, 1994, vol. 63, no.5, pp. 792–798.

    Google Scholar 

  57. Tereshina, V.M. and Feofilova, E.P., On the Biological Function of the Two Sporulation Types in the Mucorous Fungus Blakeslea trispora, Mikrobiologiya, 1996, vol. 65, no.6, pp. 777–781.

    Google Scholar 

  58. Feofilova, E.P., Tereshina, V.M., Khokhlova, N.S., and Memorskaya, A.S., Different Mechanisms of the Biochemical Adaptation of Mycelial Fungi to Temperature Stress: Changes in the Cytosol Carbohydrate Composition, Mikrobiologiya, 2000, vol. 69, no.5, pp. 597–605.

    Google Scholar 

  59. Feofilova, E.P. and Tereshina, V.M., Thermophily in Mycelial Fungi Considered from the Viewpoint of Biochemical Adaptation to Temperature Stress, Prikl. Biokhim. Mikrobiol., 1999, vol. 35, no.5, pp. 546–556.

    Google Scholar 

  60. Cerami, A., Aging of Protein and Nucleic Acids: What Is the Role of Glucose, Trends Biol. Sci., 1986, vol. 11, no.8, pp. 311–314.

    Google Scholar 

  61. Hottiger, T., Schmutz, P., and Wiemken, A., Heat-Induced Accumulation and Futile Cycling of Trehalose in Saccharomyces cerevisiae, J. Bacteriol., 1987, vol. 169, no.12, pp. 5518–5522.

    Google Scholar 

  62. Crowe, J.H., Crowe, L.M., Carpenter, J.F., Rudolph, A.S., Wistrom, C.A., Spargo, B.J., and Anchordoguy, T.J., Interaction of Sugars with Membranes, Biochim. Biophys. Acta, 1988, vol. 947, pp. 367–384.

    Google Scholar 

  63. Rudolph, A.S. and Crowe, J.H., Membrane Stabilization during Freezing: the Role of Two Natural Cryoprotectants, Trehalose and Proline, Cryobiology, 1985, vol. 22, pp. 367–377.

    Google Scholar 

  64. Crowe, L.M., Womersley, C., Crowe, J.H., Reid, D., Appel, L., and Rudolph, A., Prevention of Fusion and Leakage in Freeze-Dried Liposomes by Carbohydrates, Biochim. Biophys. Acta, 1986, vol. 861, pp. 131–140.

    Google Scholar 

  65. Lee, C.W.B., Das Gupta, S.K., Mattai, J., Shipley, G.G., Abdel-Mageed, O.H., Makriyannis, A., and Griffin, R.G., Characterization of the Lλ phase in Trehalose-Stabilized Dry Membranes by Solid-State NMR and X-ray Diffraction, Biochemie, 1989, vol. 28, pp. 5000–5009.

    Google Scholar 

  66. Chandrasekhar, I. and Gaber, B.P., Stabilization of the Bio-Membrane by Small Molecules: Interaction of Trehalose with the Phospholipid Bilayer, J. Biomol. Struct. Dynam., 1988, vol. 5, no.6, pp. 1163–1968.

    Google Scholar 

  67. Hottiger, T., De Virgilio, C., Hall, M.N., Boller, T., and Wiemken, A., The Role of Trehalose Synthesis for the Acquisition of Thermotolerance in Yeast: II. Physiological Concentrations of Trehalose Increase the Thermal Stability of Proteins In Vitro, Eur. J. Biochem., 1994, vol. 219, pp. 187–193.

    Google Scholar 

  68. Neves, M.J. and Francois, J., On the Mechanism by Which a Heat Shock Induces Trehalose Accumulation in Saccharomyces cerevisiae, Biochem. J., 1992, vol. 288, pp. 559–564.

    Google Scholar 

  69. Iwahashi, H., Obushi, K., Fujii, S., and Komatsu, Y., The Correlative Evidence Suggesting That Trehalose Stabilizes Membrane Structure in the Yeast Saccharomyces cerevisiae, Cell. Mol. Biol., 1995, vol. 41, no.6, pp. 763–769.

    Google Scholar 

  70. Hottiger, T., Boller, T., and Wiemken, A., Correlation of Trehalose Content and Heat Resistance in Yeast Mutants Altered in the RAS/Adenylate Cyclase Pathway: Is Trehalose a Thermoprotectant?, FEBS Lett., 1989, vol. 255, no.2, pp. 431–434.

    Google Scholar 

  71. Attfield, P.V., Raman, A., and Northcott, C.J., Construction of Saccharomyces cerevisiae Strains That Accumulate Relatively Low Concentration of Trehalose, and Their Application in Testing the Contribution of the Disaccharide to Stress Tolerance, FEMS Microbiol. Lett., 1992, vol. 94, pp. 271–276.

    Google Scholar 

  72. Cruz, A.K., Terenzi, H.F., Jorge, J.A., and Terenzi, H.F., Cyclic AMP-Dependent, Constitutive Thermotolerance in the Adenylate Cyclase-Deficient Cr-1 (Crisp) Mutant of Neurospora crassa, Curr. Genet., 1988, vol. 13, pp. 451–454.

    Google Scholar 

  73. Panek, A.C., Vania, J.J.M., Paschoalin, M.F., and Panek, D., Regulation of Trehalose Metabolism in Saccharomyces cerevisiae Mutants during Temperature Shifts, Biochimie, 1990, vol. 72, pp. 77–79.

    Google Scholar 

  74. De Virgilio, C., Muller, J., Boller, T., and Wiemken, A., A Constitutive, Heat Shock-Activated Neutral trehalase Occurs in Schizosaccharomyces pombe in Addition to the Sporulation-Specific Acid Trehalase, FEMS Microbiol. Lett., 1991, vol. 84, pp. 85–90.

    Google Scholar 

  75. De Virgilio, C., Simmen, U., Hottiger, T., Boller, T., and Wiemken, A., Heat Shock Induces Enzymes of Trehalose Metabolism, Trehalose Accumulation, and Thermo-tolerance in Schizosaccharomyces pombe, Even in the Presence of Cycloheximide, FEBS Lett., 1990, vol. 273, no.1/2, pp. 107–110.

    Google Scholar 

  76. Nwaka, S., Kopp, M., Burgert, M., Deuchler, I., Kienle, I., and Holzer, H., Is Thermotolerance of Yeast Dependent on Trehalose Accumulation?, FEBS Lett., 1994, vol. 344, pp. 225–228.

    Google Scholar 

  77. Piper, P.W. and Lockheart, A., A Temperature-Sensitive Mutant of Saccharomyces cerevisiae Defective in the Specific Phosphatase of Trehalose Biosynthesis, FEMS Microbiol. Lett., 1988, vol. 49, pp. 245–50.

    Google Scholar 

  78. Elliot, B., Haltiwanger, R.S., and Futcher, B., Synergy between Trehalose and HSP 104 for Thermotolerance in Saccharomyces cerevisiae, Genetics, 1996, vol. 144, pp. 923–933.

    Google Scholar 

  79. Iwahashi, H., Nwaka, S., Obushi, K., and Komatsu, Y., Evidence for the Interplay Between Trehalose Metabolism and HSP 104 in Yeast, Appl. Environ. Microbiol., 1998, vol. 64, no.11, pp. 4614–4617.

    Google Scholar 

  80. Gounalaki, N. and Thireos, G., YAP 1p, a Yeast Transcriptional Activator That Mediates Multidrug Resistance, Regulates the Metabolic Stress Response, EMBO J., 1994, vol. 13, no.17, pp. 4036–4041.

    Google Scholar 

  81. Feofilova, E.P., Trehalose, Stress, and Anabiosis, Mikrobiologiya, 1992, vol. 61, no.5, pp. 741–754.

    Google Scholar 

  82. Tereshina, V.M., Mikhailova, M.V., and Feofilova, E.P., Physiological Role of Trehalose and Antioxidant in Cunninghamella japonica during Thermal Stress, Mikrobiologiya, 1991, vol. 60, no.5, pp. 781–789.

    Google Scholar 

  83. Benaroudj, N., Do Hee Lee, and Goldberg, A.L., Trehalose Accumulation during Cellular Stress Protects Cells and Cellular Proteins from Damage by Oxygen Radicals, J. Biol. Chem., 2001, vol. 276, no.26, pp. 24261–24267.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

__________

Translated from Mikrobiologiya, Vol. 74, No. 3, 2005, pp. 293–304. p ]Original Russian Text Copyright © 2005 by Tereshina.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tereshina, V.M. Thermotolerance in Fungi: The Role of Heat Shock Proteins and Trehalose. Microbiology 74, 247–257 (2005). https://doi.org/10.1007/s11021-005-0059-y

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11021-005-0059-y

Key words

Navigation