Skip to main content
Log in

Viscoelastic frictional properties of rubber-layer roller bearings (RLRB) seismic isolators

  • Published:
Meccanica Aims and scope Submit manuscript

Abstract

This paper deals with the behavior of a rubber-layer roller bearing (RLRB) isolation system. This system consists of steel cylinders interposed between steel plates padded with high damping rubber layers. When the cylinders start to roll, a partial decoupling is achieved between the superstructure response and the ground motion. However, the presence of rubber layers in RLRB isolators aims at dissipating part of the seismic energy, thus reducing the relative motion between the base and the superstructure (building). To better understand this phenomenon, we proceeded to a mechanistic study of the viscoelastic contact interaction between the rolling cylinders and the rubber layers. The analysis is led in the framework of continuum mechanics and linear viscoelasticity by means of a numerical strategy, belonging to the class of boundary element methods, able to take into account the viscoelastic layer thickness. The results show that, depending on the design parameters, a strong reduction of the viscoelastic friction can be achieved, useful to uncouple the motion of the superstructure from the motion of the base and then of the ground, without negatively affecting the amount of energy dissipation per unit time. The simulations allow determining the optimal sizes and dimensions to the component parts of the isolator.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Notes

  1. The official earthquake spectra data are available at http://itaca.mi.ingv.it/.

References

  1. Butterworth JW (2006) Seismic response of a non-concentric rolling isolator system. Adv Struct Eng 9(1):39–54

    Article  Google Scholar 

  2. Carbone G, Mangialardi L (2004) Adhesion and friction of an elastic half-space in contact with a slightly wavy rigid surface. J Mech Phys Solids 52(6):1267–1287

    Article  ADS  MATH  Google Scholar 

  3. Carbone G, Mangialardi L (2008) Analysis of the adhesive contact of confined layers by using a Green’s function approach. J Mech Phys Solids 56(2):684–706

    Article  ADS  MathSciNet  MATH  Google Scholar 

  4. Carbone G, Putignano C (2013) A novel methodology to predict sliding and rolling friction of viscoelastic materials: theory and experiments. J Mech Phys Solids 61(8):1822–1834

    Article  ADS  MathSciNet  Google Scholar 

  5. Carbone G, Scaraggi M, Tartaglino U (2009) Adhesive contact of rough surfaces: comparison between numerical calculations and analytical theories. Eur Phys J E 30(1):65–74

    Article  Google Scholar 

  6. Charmet JC, Barquins M (1996) Adhesive contact and rolling of a rigid cylinder under the pull of gravity on the underside of a smooth-surfaced sheet of rubber. Int J Adhes Adhes 16(4):249–254

    Article  Google Scholar 

  7. Christensen RM (1982) Theory of viscoelasticity. Academic Press, New York

    Google Scholar 

  8. Ciavarella M, Menga N (2015) A note on wear of elastic sliding parts with varying contact area. J Mech Mater Struct 10(3):255–264

    Article  MathSciNet  Google Scholar 

  9. Code UB (1997) Uniform building code. In: International conference of building officials, Whittier

  10. Cui S (2012) Integrated design methodology for isolated floor systems in single-degree-of-freedom structural fuse systems. State University of New York at Buffalo

  11. Dapp WB, Lücke A, Persson BN, Müser MH (2012) Self-affine elastic contacts: percolation and leakage. Phys Rev Lett 108(24):244,301

    Article  Google Scholar 

  12. Diaferio M, Foti D (2015) On the nonlinear behavior of rc buildings in near-field areas. Int J Math Models Methods Appl Scie 9:607–613

    Google Scholar 

  13. Dimaki A, Dmitriev AI, Menga N, Papangelo A, Ciavarella M, Popov VL (2016) Fast high-resolution simulation of the gross slip wear of axially symmetric contacts. Tribol Trans 59(1):189–194

    Article  Google Scholar 

  14. Foti D (2014a) On the seismic response of protected and unprotected middle-rise steel frames in far-field and near-field areas. Shock Vib 2014:11. doi:10.1155/2014/393870

  15. Foti D (2014b) Response of frames seismically protected with passive systems in near-field areas. Int J Struct Eng 5(4):326–345

    Article  Google Scholar 

  16. Foti D (2015) Local ground effects in near-field and far-field areas on seismically protected buildings. Soil Dyn Earthq Eng 74:14–24

    Article  Google Scholar 

  17. Foti D, Kelly J (1996) Experimental study of a reduced scale model seismically base isolated with rubber-layer roller bearings (RLRB). Seismic Engineering Monographs, Centro Internacional de Metodos Numericos en Ingenieria

  18. Foti D, Mongelli M (2011) Isolatori sismici per edifici esistenti e di nuova costruzione. Dario Flaccovio Editore, Palermo

    Google Scholar 

  19. Foti D, Diaferio M, Nobile R (2010) Optimal design of a new seismic passive protection device made in aluminium and steel. Struct Eng Mech 35(1):119–122

    Article  Google Scholar 

  20. Foti D, Diaferio M, Nobile R (2013) Dynamic behavior of new aluminum–steel energy dissipating devices. Struct Control Health Monit 20(7):1106–1119

    Article  Google Scholar 

  21. Guerreiro L, Azevedo J, Muhr AH (2007) Seismic tests and numerical modeling of a rolling-ball isolation system. J Earthq Eng 11(1):49–66

    Article  Google Scholar 

  22. Harvey PS, Gavin HP (2013) The nonholonomic and chaotic nature of a rolling isolation system. J Sound Vib 332(14):3535–3551

    Article  ADS  Google Scholar 

  23. Harvey PS, Kelly KC (2016) A review of rolling-type seismic isolation: historical development and future directions. Eng Struct 125:521–531

    Article  Google Scholar 

  24. Harvey P Jr (2015) Vertical accelerations in rolling isolation systems: Experiments and simulations. J Eng Mech 142:04015091

    Article  Google Scholar 

  25. Hunter S (1961) The rolling contact of a rigid cylinder with a viscoelastic half space. J Appl Mech 28(4):611–617

    Article  MATH  Google Scholar 

  26. Hyun S, Pei L, Molinari JF, Robbins MO (2004) Finite-element analysis of contact between elastic self-affine surfaces. Phys Rev E 70(2):026,117

    Article  Google Scholar 

  27. Jangid R, Kelly J (2001) Base isolation for near-fault motions. Earthq Eng Struct Dyn 30(5):691–707

    Article  Google Scholar 

  28. Jeon BG, Chang SJ, Kim SW, Kim NS (2015) Base isolation performance of a cone-type friction pendulum bearing system. Struct Eng Mech 53(2):227–248

    Article  Google Scholar 

  29. Kani N (2009) Current state of seismic-isolation design. J Dis Res 4(3):175–181. doi:10.20965/jdr.2009.p0175

  30. Kelly JM (1986) Aseismic base isolation: review and bibliography. Soil Dyn Earthq Eng 5(4):202–216

    Article  Google Scholar 

  31. Kelly JM (1990) Base isolation: linear theory and design. Earthq Spectra 6(2):223–244

    Article  Google Scholar 

  32. Kelly JM (1997) Seismic isolation for earthquake-resistant design. In: Earthquake-resistant design with rubber. Springer, London, pp 1–18. doi:10.1007/978-1-4471-0971-6_1

  33. Kemeny ZA (1997) Ball-in-cone seismic isolation bearing. US Patent 5,599,106

  34. Le Tallec P, Rahler C (1994) Numerical models of steady rolling for non-linear viscoelastic structures in finite deformations. Int J Numer Methods Eng 37(7):1159–1186

    Article  MATH  Google Scholar 

  35. Lin IK, Ou KS, Liao YM, Liu Y, Chen KS, Zhang X et al (2009) Viscoelastic characterization and modeling of polymer transducers for biological applications. J Microelectromech Syst 18(5):1087–1099

    Article  Google Scholar 

  36. Lin TW, Hone CC (1993) Base isolation by free rolling rods under basement. Earthq Eng Struct Dyn 22(3):261–273

    Article  Google Scholar 

  37. Melkumyan M (2011) New solutions in seismic isolation. LUSABATS, Yerevan

  38. Menga N, Ciavarella M (2015) A winkler solution for the axisymmetric hertzian contact problem with wear and finite element method comparison. J Strain Anal Eng Des 50(3):156–162

    Article  Google Scholar 

  39. Menga N, Putignano C, Carbone G, Demelio G (2014) The sliding contact of a rigid wavy surface with a viscoelastic half-space. Proc R Soc A 470:20140392. doi:10.1098/rspa.2014.0392

  40. Menga N, Afferrante L, Carbone G (2016a) Adhesive and adhesiveless contact mechanics of elastic layers on slightly wavy rigid substrates. Int J Solids Struct 88:101–109

    Article  Google Scholar 

  41. Menga N, Afferrante L, Carbone G (2016b) Effect of thickness and boundary conditions on the behavior of viscoelastic layers in sliding contact with wavy profiles. J Mech Phys Solids 95:517–529

    Article  ADS  MathSciNet  Google Scholar 

  42. Myslimaj B, Gamble S, Chin-Quee D, Davies A (2003) Base isolation technologies for seismic protection of museum artifacts. In: The 2003 IAMFA Annual Conference in San Francisco

  43. Naeim F, Kelly JM (1999) Design of seismic isolated structures: from theory to practice. Wiley, New York

    Book  Google Scholar 

  44. Nagarajaiah S (2006) Structural control benchmark problem: smart base isolated building subjected to near fault earthquakes. Struct Control Health Monit 13(2–3):571–572

    Article  Google Scholar 

  45. Nasdala L, Kaliske M, Becker A, Rothert H (1998) An efficient viscoelastic formulation for steady-state rolling structures. Comput Mech 22(5):395–403

    Article  MATH  Google Scholar 

  46. Ordonez D, Foti D, Bozzo L (2003) Comparative study of the inelastic response of base isolated buildings. Earthq Eng Struct Dyn 32(1):151–164

    Article  Google Scholar 

  47. Padovan J (1987) Finite element analysis of steady and transiently moving/rolling nonlinear viscoelastic structure—I. Theory. Comput Struct 27(2):249–257

    Article  MATH  Google Scholar 

  48. Padovan J, Paramadilok O (1985) Transient and steady state viscoelastic rolling contact. Comput Struct 20(1):545–553

    Article  MATH  Google Scholar 

  49. Padovan J, Kazempour A, Tabaddor F, Brockman B (1992) Alternative formulations of rolling contact problems. Finite Elem Anal Des 11(4):275–284

    Article  Google Scholar 

  50. Putignano C, Carbone G, Dini D (2016) Theory of reciprocating contact for viscoelastic solids. Phys Rev E 93(4):043,003

    Article  Google Scholar 

  51. Shull KR, Ahn D, Mowery CL (1997) Finite-size corrections to the JKR technique for measuring adhesion: soft spherical caps adhering to flat, rigid surfaces. Langmuir 13(6):1799–1804

    Article  Google Scholar 

  52. Tirca LD, Foti D, Diaferio M (2003) Response of middle-rise steel frames with and without passive dampers to near-field ground motions. Eng Struct 25(2):169–179

    Article  Google Scholar 

  53. Tsai C (2015) Seismic isolation devices: History and recent developments. In: ASME 2015 pressure vessels and piping conference, American Society of Mechanical Engineers, p V008T08A035

  54. Tsai C, Tsou CP, Lin YC, Chen MJ, Chen WS (2006) The material behavior and isolation benefits of ball pendulum system. In: ASME 2006 pressure vessels and piping/ICPVT-11 conference, American Society of Mechanical Engineers, pp 19–25

  55. VanLandingham MR, Chang NK, Drzal P, White C, Chang SH (2005) Viscoelastic characterization of polymers using instrumented indentation. I. Quasi-static testing. J Polym Sci Part B: Polym Phys 43(14):1794–1811

    Article  ADS  Google Scholar 

  56. Warn GP, Ryan KL (2012) A review of seismic isolation for buildings: historical development and research needs. Buildings 2(3):300–325

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nicola Menga.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Menga, N., Foti, D. & Carbone, G. Viscoelastic frictional properties of rubber-layer roller bearings (RLRB) seismic isolators. Meccanica 52, 2807–2817 (2017). https://doi.org/10.1007/s11012-016-0612-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11012-016-0612-y

Keywords

Navigation