Skip to main content

Advertisement

Log in

Mechanisms of anthracycline-mediated cardiotoxicity and preventative strategies in women with breast cancer

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

While anthracyclines (ACs) are a class of chemotherapeutic agents that have improved the prognosis of many women with breast cancer, it is one of the most cardiotoxic agents used to treat cancer. Despite their reported dose-dependent cardiotoxicity, AC-based chemotherapy has become the mainstay of breast cancer therapy due to its efficacy. Elucidating the mechanisms of anthracycline-mediated cardiotoxicity and associated therapeutic interventions continue to be the main focus in the field of cardio-oncology. Herein, we summarized the current literature surrounding the mechanisms of anthracycline-induced cardiotoxicity, including the role of topoisomerase II inhibition, generation of reactive oxygen species, and elevations in free radicals. Furthermore, this review highlights the molecular mechanisms of potential cardioprotective interventions in this setting. The benefits of pharmaceuticals, including dexrazoxane, angiotensin-converting enzyme inhibitors, angiotensin receptor blockers, beta-blockers, statins, and antioxidants in this setting, are reviewed. Finally, the mechanisms of emerging preventative interventions within this patient population including nutraceuticals and aerobic exercise are explored.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Fahad Ullah M (2019) Breast cancer: current perspectives on the disease status. Advances in experimental medicine and biology. Springer, New York LLC, pp 51–64

    Google Scholar 

  2. McGowan JV, Chung R, Maulik A, Piotrowska I, Walker JM, Yellon DM (2017) Anthracycline chemotherapy and cardiotoxicity. Cardiovasc Drugs Ther 31:63–75. https://doi.org/10.1007/s10557-016-6711-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Jasra S, Anampa J (2018) Anthracycline use for early stage breast cancer in the modern era: a review. Curr Treat Options Oncol. https://doi.org/10.1007/s11864-018-0547-8

    Article  PubMed  Google Scholar 

  4. Early Breast Cancer Trialists’ Collaborative Group (EBCTCG) (2005) Effects of chemotherapy and hormonal therapy for early breast cancer on recurrence and 15-year survival: an overview of the randomised trials. Lancet 365:1687–1717. https://doi.org/10.1016/S0140-6736(05)66544-0

    Article  CAS  Google Scholar 

  5. Minotti G, Menna P, Salvatorelli E, Cairo G, Gianni L (2004) Anthracyclines: molecular advances and pharmacologie developments in antitumor activity and cardiotoxicity. Pharmacol Rev 56:185–229

    Article  CAS  Google Scholar 

  6. Gewirtz DA (1999) A critical evaluation of the mechanisms of action proposed for the antitumor effects of the anthracycline antibiotics adriamycin and daunorubicin. Biochem Pharmacol 57:727–741. https://doi.org/10.1016/S0006-2952(98)00307-4

    Article  CAS  PubMed  Google Scholar 

  7. Maxwell A, Bush NG, Evans-Roberts K (2015) DNA topoisomerases. EcoSal Plus. https://doi.org/10.1128/ecosalplus.ESP-0010-2014

    Article  PubMed  Google Scholar 

  8. Zhang S, Liu X, Bawa-Khalfe T, Lu LS, Lyu YL, Liu LF, Yeh ETH (2012) Identification of the molecular basis of doxorubicin-induced cardiotoxicity. Nat Med 18:1639–1642. https://doi.org/10.1038/nm.2919

    Article  CAS  Google Scholar 

  9. Henriksen PA (2018) Anthracycline cardiotoxicity: an update on mechanisms, monitoring and prevention. Heart 104:971–977

    Article  CAS  Google Scholar 

  10. Jornayvaz FR, Shulman GI (2010) Regulation of mitochondrial biogenesis. Essays Biochem 47:69–84. https://doi.org/10.1042/BSE0470069

    Article  CAS  PubMed  Google Scholar 

  11. Ludke A, Akolkar G, Ayyappan P, Sharma AK, Singal PK (2017) Time course of changes in oxidative stress and stress-induced proteins in cardiomyocytes exposed to doxorubicin and prevention by vitamin C. PLoS ONE. https://doi.org/10.1371/journal.pone.0179452

    Article  PubMed  PubMed Central  Google Scholar 

  12. Cappetta D, De Angelis A, Sapio L, Prezioso L, Illiano M, Quaini F, Rossi F, Berrino L, Naviglio S, Urbanek K (2017) Oxidative stress and cellular response to doxorubicin: a common factor in the complex milieu of anthracycline cardiotoxicity. Oxid Med Cell Longev. https://doi.org/10.1155/2017/1521020

    Article  PubMed  PubMed Central  Google Scholar 

  13. Songbo M, Lang H, Xinyong C, Bin X, Ping Z, Liang S (2019) Oxidative stress injury in doxorubicin-induced cardiotoxicity. Toxicol Lett 307:41–48

    Article  CAS  Google Scholar 

  14. Takemura G, Fujiwara H (2007) Doxorubicin-induced cardiomyopathy. from the cardiotoxic mechanisms to management. Prog Cardiovasc Dis 49:330–352. https://doi.org/10.1016/j.pcad.2006.10.002

    Article  CAS  PubMed  Google Scholar 

  15. Farías JG, Molina VM, Carrasco RA, Zepeda AB, Figueroa E, Letelier P, Castillo RL (2017) Antioxidant therapeutic strategies for cardiovascular conditions associated with oxidative stress. Nutrients 9:1–23

    Article  Google Scholar 

  16. Ferdinandy P, Danial H, Ambrus I, Rothery RA, Schulz R (2000) Peroxynitrite is a major contributor to cytokine-induced myocardial contractile failure. Circ Res 87:241–247. https://doi.org/10.1161/01.RES.87.3.241

    Article  CAS  PubMed  Google Scholar 

  17. Akolkar G, Da Silva DD, Ayyappan P, Bagchi AK, Jassal DS, Salemi VMC, Irigoyen MC, De Angelis K, Singal PK (2017) Vitamin C mitigates oxidative/nitrosative stress and inflammation in doxorubicin-induced cardiomyopathy. Am J Physiol Heart Circ Physiol 313:795–809. https://doi.org/10.1152/ajpheart.00253.2017

    Article  CAS  Google Scholar 

  18. Sangomla S, Saifi MA, Khurana A, Godugu C (2018) Nanoceria ameliorates doxorubicin induced cardiotoxicity: possible mitigation via reduction of oxidative stress and inflammation. J Trace Elem Med Biol 47:53–62. https://doi.org/10.1016/j.jtemb.2018.01.016

    Article  CAS  PubMed  Google Scholar 

  19. Dhalla NS, Elmoselhi AB, Hata T, Makino N (2000) Status of myocardial antioxidants in ischemia-reperfusion injury. Cardiovasc Res 47:446–456

    Article  CAS  Google Scholar 

  20. Ganatra S, Nohria A, Shah S, Groarke JD, Sharma A, Venesy D, Patten R, Gunturu K, Zarwan C, Neilan TG, Barac A, Hayek SS, Dani S, Solanki S, Mahmood SS, Lipshultz SE (2019) Upfront dexrazoxane for the reduction of anthracycline-induced cardiotoxicity in adults with preexisting cardiomyopathy and cancer: a consecutive case series. Cardio-Oncology. https://doi.org/10.1186/s40959-019-0036-7

    Article  PubMed  PubMed Central  Google Scholar 

  21. Swain SM, Whaley FS, Gerber MC, Weisberg S, York M, Spicer D, Jones SE, Wadler S, Desai A, Vogel C, Speyer J, Mittelman A, Reddy S, Pendergrass K, Velez-Garcia E, Ewer MS, Bianchine JR, Gams RA (1997) Cardioprotection with dexrazoxane for doxorubicin-containing therapy in advanced breast cancer. J Clin Oncol 15:1318–1332. https://doi.org/10.1200/JCO.1997.15.4.1318

    Article  CAS  PubMed  Google Scholar 

  22. Reichardt P, Tabone MD, Mora J, Morland B, Jones RL (2018) Risk-benefit of dexrazoxane for preventing anthracycline-related cardiotoxicity: re-evaluating the European labeling. Future Oncol 14:2663–2676

    Article  CAS  Google Scholar 

  23. Bures J, Jirkovska A, Sestak V, Jansova H, Karabanovich G, Roh J, Sterba M, Simunek T, Kovarikova P (2017) Investigation of novel dexrazoxane analogue JR-311 shows significant cardioprotective effects through topoisomerase IIbeta but not its iron chelating metabolite. Toxicology 392:1–10. https://doi.org/10.1016/j.tox.2017.09.012

    Article  CAS  PubMed  Google Scholar 

  24. Yu X, Ruan Y, Huang X, Dou L, Lan M, Cui J, Chen B, Gong H, Wang Q, Yan M, Sun S, Qiu Q, Zhang X, Man Y, Tang W, Li J, Shen T (2020) Dexrazoxane ameliorates doxorubicin-induced cardiotoxicity by inhibiting both apoptosis and necroptosis in cardiomyocytes. Biochem Biophys Res Commun 523:140–146. https://doi.org/10.1016/j.bbrc.2019.12.027

    Article  CAS  PubMed  Google Scholar 

  25. Kalay N, Basar E, Ozdogru I, Er O, Cetinkaya Y, Dogan A, Inanc T, Oguzhan A, Eryol NK, Topsakal R, Ergin A (2006) Protective effects of carvedilol against anthracycline-induced cardiomyopathy. J Am Coll Cardiol 48:2258–2262. https://doi.org/10.1016/j.jacc.2006.07.052

    Article  CAS  PubMed  Google Scholar 

  26. Kaya MG, Ozkan M, Gunebakmaz O, Akkaya H, Kaya EG, Akpek M, Kalay N, Dikilitas M, Yarlioglues M, Karaca H, Berk V, Ardic I, Ergin A, Lam YY (2013) Protective effects of nebivolol against anthracycline-induced cardiomyopathy: a randomized control study. Int J Cardiol 167:2306–2310. https://doi.org/10.1016/j.ijcard.2012.06.023

    Article  PubMed  Google Scholar 

  27. Elitok A, Oz F, Ahmet Y, Kilic L, Ciftci R, Sen F, Bugra Z, Mercanoglu F, Oncul A, Oflaz H (2014) Effect of carvedilol on silent anthracycline-induced cardiotoxicity assessed by strain imaging: a prospective randomized controlled study with six-month follow-up. Cardiol J 21:509–515. https://doi.org/10.5603/CJ.a2013.0150

    Article  PubMed  Google Scholar 

  28. Nabati M, Janbabai G, Baghyari S, Esmaili K, Yazdani J (2017) Cardioprotective effects of carvedilol in inhibiting doxorubicin-induced cardiotoxicity. J Cardiovasc Pharmacol 69:279–285. https://doi.org/10.1097/FJC.0000000000000470

    Article  CAS  PubMed  Google Scholar 

  29. Tashakori Beheshti A, Mostafavi Toroghi H, Hosseini G, Zarifian A, Homaei Shandiz F, Fazlinezhad A (2016) Carvedilol administration can prevent doxorubicin-induced cardiotoxicity: a double-blind randomized trial. Cardiology 134:47–53. https://doi.org/10.1159/000442722

    Article  CAS  PubMed  Google Scholar 

  30. Gulati G, Heck SL, Ree AH, Hoffmann P, Schulz-Menger J, Fagerland MW, Gravdehaug B, Von Knobelsdorff-Brenkenhoff F, Bratland Å, Storås TH, Hagve TA, Røsjø H, Steine K, Geisler J, Omland T (2016) Prevention of cardiac dysfunction during adjuvant breast cancer therapy (PRADA): a 2 × 2 factorial, randomized, placebo-controlled, double-blind clinical trial of candesartan and metoprolol. Eur Heart J 37:1671–1680. https://doi.org/10.1093/eurheartj/ehw022

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Abuosa AM, Elshiekh AH, Qureshi K, Abrar MB, Kholeif MA, Kinsara AJ, Andejani A, Ahmed AH, Cleland JGF (2018) Prophylactic use of carvedilol to prevent ventricular dysfunction in patients with cancer treated with doxorubicin. Indian Heart J 70:S96–S100. https://doi.org/10.1016/j.ihj.2018.06.011

    Article  PubMed  PubMed Central  Google Scholar 

  32. Avila MS, Ayub-Ferreira SM, de Barros Wanderley MR, das Dores Cruz F, Gonçalves Brandão SM, Rigaud VOC, Higuchi-dos-Santos MH, Hajjar LA, Kalil Filho R, Hoff PM, Sahade M, Ferrari MSM, de Paula Costa RL, Mano MS, Bittencourt Viana Cruz CB, Abduch MC, Lofrano Alves MS, Guimaraes GV, Issa VS, Bittencourt MS, Bocchi EA (2018) Carvedilol for prevention of chemotherapy-related cardiotoxicity: the CECCY trial. J Am Coll Cardiol 71:2281–2290. https://doi.org/10.1016/j.jacc.2018.02.049

    Article  CAS  PubMed  Google Scholar 

  33. Cochera F, Dinca D, Bordejevic DA, Citu IM, Mavrea AM, Andor M, Trofenciuc M, Tomescu MC (2018) Nebivolol effect on doxorubicin-induced cardiotoxicity in breast cancer. Cancer Manag Res 10:2071–2081. https://doi.org/10.2147/CMAR.S166481

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Zhang QL, Yang JJ, Zhang HS (2019) Carvedilol (CAR) combined with carnosic acid (CAA) attenuates doxorubicin-induced cardiotoxicity by suppressing excessive oxidative stress, inflammation, apoptosis and autophagy. Biomed Pharmacother 109:71–83. https://doi.org/10.1016/j.biopha.2018.07.037

    Article  CAS  PubMed  Google Scholar 

  35. Chen QM, Maltagliati AJ (2018) Nrf2 at the heart of oxidative stress and cardiac protection. Physiol Genomics 50:77–97

    Article  CAS  Google Scholar 

  36. Spallarossa P, Garibaldi S, Altieri P, Fabbi P, Manca V, Nasti S, Rossettin P, Ghigliotti G, Ballestrero A, Patrone F, Barsotti A, Brunelli C (2004) Carvedilol prevents doxorubicin-induced free radical release and apoptosis in cardiomyocytes in vitro. J Mol Cell Cardiol 37:837–846. https://doi.org/10.1016/j.yjmcc.2004.05.024

    Article  CAS  PubMed  Google Scholar 

  37. Arozal W, Watanabe K, Veeraveedu PT, Ma M, Thandavarayan RA, Sukumaran V, Suzuki K, Kodama M, Aizawa Y (2010) Protective effect of carvedilol on daunorubicin-induced cardiotoxicity and nephrotoxicity in rats. Toxicology 274:18–26. https://doi.org/10.1016/j.tox.2010.05.003

    Article  CAS  PubMed  Google Scholar 

  38. Burnier M, Brunner HR (2000) Angiotensin II receptor antagonists. Lancet 355:637–645

    Article  CAS  Google Scholar 

  39. Cardinale D, Colombo A, Sandri MT, Lamantia G, Colombo N, Civelli M, Martinelli G, Veglia F, Fiorentini C, Cipolla CM (2006) Prevention of high-dose chemotherapy-induced cardiotoxicity in high-risk patients by angiotensin-converting enzyme inhibition. Circulation 114:2474–2481. https://doi.org/10.1161/CIRCULATIONAHA.106.635144

    Article  CAS  PubMed  Google Scholar 

  40. Dessì M, Madeddu C, Piras A, Cadeddu C, Antoni G, Mercuro G, Mantovani G (2013) Long-term, up to 18 months, protective effects of the angiotensin II receptor blocker telmisartan on epirubin-induced inflammation and oxidative stress assessed by serial strain rate. Springerplus 2:1–10. https://doi.org/10.1186/2193-1801-2-198

    Article  CAS  Google Scholar 

  41. Radulescu D, Buzdugan E, Ciuleanu TE, Todor N, Stoicescu L (2013) Can the epirubicin cardiotoxicity in cancer patients be prevented by angiotensin converting enzyme inhibitors? J BUON 18(4):1052–1057

    CAS  PubMed  Google Scholar 

  42. Janbabai G, Nabati M, Faghihinia M, Azizi S, Borhani S, Yazdani J (2017) Effect of enalapril on preventing anthracycline-induced cardiomyopathy. Cardiovasc Toxicol 17:130–139. https://doi.org/10.1007/s12012-016-9365-z

    Article  CAS  PubMed  Google Scholar 

  43. Hiona A, Lee AS, Nagendran J, Xie X, Connolly AJ, Robbins RC, Wu JC (2011) Pretreatment with angiotensin-converting enzyme inhibitor improves doxorubicin-induced cardiomyopathy via preservation of mitochondrial function. J Thorac Cardiovasc Surg 142:396. https://doi.org/10.1016/j.jtcvs.2010.07.097

    Article  CAS  PubMed  Google Scholar 

  44. Abd El-Aziz MA, Othman AI, Amer M, El-Missiry MA (2001) Potential protective role of angiotensin-converting enzyme inhibitors captopril and enalapril against adriamycin-induced acute cardiac and hepatic toxicity in rats. J Appl Toxicol 21:469–473. https://doi.org/10.1002/jat.782

    Article  CAS  PubMed  Google Scholar 

  45. Chopra M, Scott N, McMurray J, McLay J, Bridges A, Smith W, Belch J (1989) Captopril: a free radical scavenger. Br J Clin Pharmacol 27:396–399. https://doi.org/10.1111/j.1365-2125.1989.tb05384.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Al-Harbi MM (1993) Effect of captopril on the cytological and biochemical changes induced by adriamycin. Food Chem Toxicol 31:209–212. https://doi.org/10.1016/0278-6915(93)90095-G

    Article  CAS  PubMed  Google Scholar 

  47. Mira ML, Silva MM, Manso CF (1994) The scavenging of oxygen free radicals by angiotensin converting enzyme inhibitors: the importance of the sulfhydryl group in the chemical structure of the compounds. Ann N Y Acad Sci 723:439–441. https://doi.org/10.1111/j.1749-6632.1994.tb36771.x

    Article  CAS  PubMed  Google Scholar 

  48. De Cavanagh EMV, Fraga CG, Feeder L, Inserra F (1997) Enalapril and captopril enhance antioxidant defenses in mouse tissues. Am J Physiol Regul Integr Comp Physiol. https://doi.org/10.1152/ajpregu.1997.272.2.r514

    Article  Google Scholar 

  49. Mohamed Saleem TS, Bharani K, Gauthaman K (2010) ACE inhibitors—Angiotensin II receptor antagonists: a useful combination therapy for ischemic heart disease. Open Access Emerg Med 2:51–59

    Article  Google Scholar 

  50. Akazawa H, Yabumoto C, Yano M, Kudo-Sakamoto Y, Komuro I (2013) ARB and cardioprotection. Cardiovasc Drugs Ther 27:155–160. https://doi.org/10.1007/s10557-012-6392-2

    Article  CAS  PubMed  Google Scholar 

  51. Schmieder RE (2005) Mechanisms for the clinical benefits of angiotensin II receptor blockers. Am J Hypertens 18:720–730

    Article  CAS  Google Scholar 

  52. Schachter M (2005) Chemical, pharmacokinetic and pharmacodynamic properties of statins: an update. Fundam Clin Pharmacol 19:117–125

    Article  CAS  Google Scholar 

  53. Nabati M, Janbabai G, Esmailian J, Yazdani J (2019) Effect of rosuvastatin in preventing chemotherapy-induced cardiotoxicity in women with breast cancer: a randomized, single-blind, placebo-controlled trial. J Cardiovasc Pharmacol Ther 24:233–241. https://doi.org/10.1177/1074248418821721

    Article  CAS  PubMed  Google Scholar 

  54. Henninger C, Fritz G (2017) Statins in anthracycline-induced cardiotoxicity: rac and rho, and the heartbreakers. Cell Death Dis. 8(1):e2564

    Article  CAS  Google Scholar 

  55. Oh J, Lee BS, Lim G, Lim H, Lee CJ, Park S, Lee SH, Chung JH, Kang SM (2020) Atorvastatin protects cardiomyocyte from doxorubicin toxicity by modulating survivin expression through FOXO1 inhibition. J Mol Cell Cardiol 138:244–255. https://doi.org/10.1016/j.yjmcc.2019.12.007

    Article  CAS  PubMed  Google Scholar 

  56. Shi R, Huang CC, Aronstam RS, Ercal N, Martin A, Huang YW (2009) N-acetylcysteine amide decreases oxidative stress but not cell death induced by doxorubicin in H9c2 cardiomyocytes. BMC Pharmacol. https://doi.org/10.1186/1471-2210-9-7

    Article  PubMed  PubMed Central  Google Scholar 

  57. Goyal V, Bews H, Cheung D, Premecz S, Mandal S, Shaikh B, Best R, Bhindi R, Chaudhary R, Ravandi A, Thliveris J, Singal PK, Niraula S, Jassal DS (2016) The cardioprotective role of N-Acetyl cysteine amide in the prevention of doxorubicin and trastuzumab-mediated cardiac dysfunction. Can J Cardiol 32:1513–1519. https://doi.org/10.1016/j.cjca.2016.06.002

    Article  PubMed  Google Scholar 

  58. Walker JR, Sharma A, Lytwyn M, Bohonis S, Thliveris J, Singal PK, Jassal DS (2011) The cardioprotective role of probucol against anthracycline and trastuzumab-mediated cardiotoxicity. J Am Soc Echocardiogr 24:699–705. https://doi.org/10.1016/j.echo.2011.01.018

    Article  PubMed  Google Scholar 

  59. El-Demerdash E, Ali AA, Sayed-Ahmed MM, Osman AMM (2003) New aspects in probucol cardioprotection against doxorubicin-induced cardiotoxicity. Cancer Chemother Pharmacol 52:411–416. https://doi.org/10.1007/s00280-003-0676-y

    Article  PubMed  Google Scholar 

  60. Sangweni NF, Moremane M, Riedel S, van Vuuren D, Huisamen B, Mabasa L, Barry R, Johnson R (2020) The prophylactic effect of pinocembrin against doxorubicin-induced cardiotoxicity in an in vitro H9c2 cell model. Front Pharmacol. https://doi.org/10.3389/fphar.2020.01172

    Article  PubMed  PubMed Central  Google Scholar 

  61. Gillingham LG, Gustafson JA, Han SY, Jassal DS, Jones PJH (2011) High-oleic rapeseed (canola) and flaxseed oils modulate serum lipids and inflammatory biomarkers in hypercholesterolaemic subjects. Br J Nutr 105:417–427. https://doi.org/10.1017/S0007114510003697

    Article  CAS  PubMed  Google Scholar 

  62. Pan A, Yu D, Demark-Wahnefried W, Franco OH, Lin X (2009) Meta-analysis of the effects of flaxseed interventions on blood lipids. Am J Clin Nutr 90:288–297. https://doi.org/10.3945/ajcn.2009.27469

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Hu C, Yuan YV, Kitts DD (2007) Antioxidant activities of the flaxseed lignan secoisolariciresinol diglucoside, its aglycone secoisolariciresinol and the mammalian lignans enterodiol and enterolactone in vitro. Food Chem Toxicol 45:2219–2227. https://doi.org/10.1016/j.fct.2007.05.017

    Article  CAS  PubMed  Google Scholar 

  64. Ren J, Chung SH (2007) Anti-inflammatory effect of α-linolenic acid and its mode of action through the inhibition of nitric oxide production and inducible nitric oxide synthase gene expression via NF-κB and mitogen-activated protein kinase pathways. J Agric Food Chem 55:5073–5080. https://doi.org/10.1021/jf0702693

    Article  CAS  PubMed  Google Scholar 

  65. Lee JC, Krochak R, Blouin A, Kanterakis S, Chatterjee S, Arguiri E, Vachani A, Solomides CC, Cengel KA, Christofidou-Solomidou M (2009) Dietary flaxseed prevents radiation-induced oxidative lung damage, inflammation and fibrosis in a mouse model of thoracic radiation injury. Cancer Biol Ther 8:47–53. https://doi.org/10.4161/cbt.8.1.7092

    Article  CAS  PubMed  Google Scholar 

  66. Asselin CY, Lam A, Cheung DYC, Eekhoudt CR, Zhu A, Mittal I, Mayba A, Solati Z, Edel A, Austria JA, Aukema HM, Ravandi A, Thliveris J, Singal PK, Pierce GN, Niraula S, Jassal DS (2020) The cardioprotective role of flaxseed in the prevention of doxorubicin- and trastuzumab-mediated cardiotoxicity in C57BL/6 mice. J Nutr 150:2353–2363. https://doi.org/10.1093/jn/nxaa144

    Article  PubMed  Google Scholar 

  67. Di Y, De Silva F, Krol ES, Alcorn J (2018) Flaxseed lignans enhance the cytotoxicity of chemotherapeutic agents against breast cancer cell lines MDA-MB-231 and SKBR3. Nutr Cancer 70:306–315. https://doi.org/10.1080/01635581.2018.1421677

    Article  CAS  PubMed  Google Scholar 

  68. Kikuchi R, Shah NP, Dent SF (2020) Strategies to prevent cardiovascular toxicity in breast cancer: is it ready for primetime? J Clin Med 9:896. https://doi.org/10.3390/jcm9040896

    Article  CAS  PubMed Central  Google Scholar 

  69. Gilchrist SC, Barac A, Ades PA, Alfano CM, Franklin BA, Jones LW, La Gerche A, Ligibel JA, Lopez G, Madan K, Oeffinger KC, Salamone J, Scott JM, Squires RW, Thomas RJ, Treat-Jacobson DJ, Wright JS (2019) Cardio-oncology rehabilitation to manage cardiovascular outcomes in cancer patients and survivors: a scientific statement from the American heart association. Circulation 139:E997–E1012. https://doi.org/10.1161/CIR.0000000000000679

    Article  PubMed  PubMed Central  Google Scholar 

  70. Rock CL, Doyle C, Demark-Wahnefried W, Meyerhardt J, Courneya KS, Schwartz AL, Bandera EV, Hamilton KK, Grant B, McCullough M, Byers T, Gansler T (2012) Nutrition and physical activity guidelines for cancer survivors. CA Cancer J Clin 62:242–274. https://doi.org/10.3322/caac.21142

    Article  Google Scholar 

  71. Kouzi SA, Uddin MN (2016) Aerobic exercise training as a potential cardioprotective strategy to attenuate doxorubicin-induced cardiotoxicity. J Pharm Pharm Sci 19:399. https://doi.org/10.18433/j3js5r

    Article  CAS  PubMed  Google Scholar 

  72. Kavazis AN, Smuder AJ, Min K, Tümer N, Powers SK (2010) Short-term exercise training protects against doxorubicin-induced cardiac mitochondrial damage independent of HSP72. Am J Physiol Heart Circ Physiol. https://doi.org/10.1152/ajpheart.00585.2010

    Article  PubMed  PubMed Central  Google Scholar 

  73. Kavazis AN, McClung JM, Hood DA, Powers SK (2008) Exercise induces a cardiac mitochondrial phenotype that resists apoptotic stimuli. Am J Physiol Heart Circ Physiol. https://doi.org/10.1152/ajpheart.01231.2007

    Article  PubMed  Google Scholar 

  74. Ascensão A, Magalhães J, Soares J, Ferreira R, Neuparth M, Marques F, Oliveira J, Duarte J (2005) Endurance training attenuates doxorubicin-induced cardiac oxidative damage in mice. Int J Cardiol 100:451–460. https://doi.org/10.1016/j.ijcard.2004.11.004

    Article  PubMed  Google Scholar 

  75. Chicco AJ, Hydock DS, Schneider CM, Hayward R (2006) Low-intensity exercise training during doxorubicin treatment protects against cardiotoxicity. J Appl Physiol 100:519–527. https://doi.org/10.1152/japplphysiol.00148.2005

    Article  CAS  PubMed  Google Scholar 

  76. Shirinbayan V, Roshan VD (2012) Pretreatment effect of running exercise on HSP70 and DOX-induced cardiotoxicity. Asian Pac J Cancer Prev 13:5849–5855. https://doi.org/10.7314/APJCP.2012.13.11.5849

    Article  PubMed  Google Scholar 

  77. Gao G, Jiang S, Ge L, Zhang S, Zhai C, Chen W, Sui S (2019) Atorvastatin improves doxorubicin-induced cardiac dysfunction by modulating Hsp70, Akt, and MAPK signaling pathways. J Cardiovasc Pharmacol 73:223–231. https://doi.org/10.1097/FJC.0000000000000646

    Article  CAS  PubMed  Google Scholar 

  78. Cardinale D, Colombo A, Bacchiani G, Tedeschi I, Meroni CA, Veglia F, Civelli M, Lamantia G, Colombo N, Curigliano G, Fiorentini C, Cipolla CM (2015) Early detection of anthracycline cardiotoxicity and improvement with heart failure therapy. Circulation 131:1981–1988. https://doi.org/10.1161/CIRCULATIONAHA.114.013777

    Article  CAS  PubMed  Google Scholar 

  79. Ohtani K, Fujino T, Ide T, Funakoshi K, Sakamoto I, Hiasa KI, Higo T, Kamezaki K, Akashi K, Tsutsui H (2019) Recovery from left ventricular dysfunction was associated with the early introduction of heart failure medical treatment in cancer patients with anthracycline-induced cardiotoxicity. Clin Res Cardiol 108:600–611. https://doi.org/10.1007/s00392-018-1386-0

    Article  CAS  PubMed  Google Scholar 

  80. Virani SA, Dent S, Brezden-Masley C, Clarke B, Davis MK, Jassal DS, Johnson C, Lemieux J, Paterson I, Sebag IA, Simmons C, Sulpher J, Thain K, Thavendiranathan P, Wentzell JR, Wurtele N, Côté MA, Fine NM, Haddad H, Hayley BD, Hopkins S, Joy AA, Rayson D, Stadnick E, Straatman L (2016) Canadian cardiovascular society guidelines for evaluation and management of cardiovascular complications of cancer therapy. Can J Cardiol 32:831–841. https://doi.org/10.1016/j.cjca.2016.02.078

    Article  PubMed  Google Scholar 

Download references

Funding

This study was supported by Heart and Stroke Foundation of Canada and Molson’s Women Heart Health/ St. Boniface Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Davinder S. Jassal.

Ethics declarations

Conflicts of interest

The authors have no conflicts of interest to disclose.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Varghese, S.S., Eekhoudt, C.R. & Jassal, D.S. Mechanisms of anthracycline-mediated cardiotoxicity and preventative strategies in women with breast cancer. Mol Cell Biochem 476, 3099–3109 (2021). https://doi.org/10.1007/s11010-021-04152-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-021-04152-y

Keywords

Navigation