Skip to main content

Advertisement

Log in

New perspectives in triple-negative breast cancer therapy based on treatments with TGFβ1 siRNA and doxorubicin

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

Triple-negative breast cancer (TNBC), which accounts for 10–20% of all breast cancers, has the worst prognosis. Although chemotherapy treatment is a standard for TNBC, it lacks a specific target. Therefore, new therapeutic strategies are required to be investigated. In this study, a combined doxorubicin (DOX) and small interfering RNA (siRNA) therapy is proposed as therapeutic strategy for targeting TGFβ1 gene. Hs578T cell line is used as in vitro model for TNBC, wherein TGFβ1siRNA therapy is employed to enhance therapeutic effects. Cell proliferation rate is measured using an MTT test, and morphological alterations are assed using microscopically approached, while gene expression is determined by qRT-PCR analysis. The combined treatment of TGFβ1siRNA and DOX reduced levels of cell proliferation and mitochondrial activity and promoted the alteration of cell morphology (dark-field microscopy). DOX treatment caused downregulation of six genes and upregulation of another six genes. The combined effects of DOX and TGFβ1siRNA resulted in upregulation of 13 genes and downregulation of four genes. Silencing of TGFβ1 resulted in activation of cell death mechanisms in Hs578T cells, to potentiate the effects of DOX, but not in an additive manner, due to the activation of genes involved in resistance to therapy (ABCB1 and IL-6).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

2-HER2:

Human epidermal growth factor

ABCB1:

ATP-binding cassette sub-family B member 1

cDNA:

Complementary DNA

DFS:

Disease-free survival

DNA:

Deoxyribonucleic acid

DOX:

Doxorubicin

ER:

Estrogen receptor

FC:

Fold change

IC50:

Half maximal inhibitory concentration

IL-6/IL-8:

Interleukin 6/interleukin 8

MGMT:

Methylation of O6-methylguanine-DssNA methyltransferase

Ml:

Milliliter

μM:

Micromolar

nM:

Nanomolar

OS:

Overall survival

PR:

Progesterone receptor

PTEN:

Phosphatase and tensin homolog

RNAi:

RNA interference

SD:

Standard deviation

siRNA:

Small interfering RNA

TCGA:

The cancer genome atlas

TGFβ1:

Transforming growth factor beta 1

TMRE:

Tetra methylrhodamine ethyl ester

TNBC:

Triple-negative breast cancer

References

  1. Wahba HA, El-Hadaad HA (2015) Current approaches in treatment of triple-negative breast cancer. Cancer Biol Med 12:106–116. https://doi.org/10.7497/j.issn.2095-3941.2015.0030

    Article  CAS  Google Scholar 

  2. Braicu C, Berindan-Neagoe I, Pileczki V, Cojocneanu-Petric R, Pop LA, Puscas E, Irimie A, Buiga R (2014) Breast tumor bank: an important resource for developing translational cancer research in Romania. Cancer Biomark 14:119–127. https://doi.org/10.3233/cbm-130309

    Article  Google Scholar 

  3. Blows FM, Driver KE, Schmidt MK, Broeks A, van Leeuwen FE, Wesseling J, Cheang MC, Gelmon K, Nielsen TO, Blomqvist C, Heikkila P, Heikkinen T, Nevanlinna H, Akslen LA, Begin LR, Foulkes WD, Couch FJ, Wang X, Cafourek V, Olson JE, Baglietto L, Giles GG, Severi G, McLean CA, Southey MC, Rakha E, Green AR, Ellis IO, Sherman ME, Lissowska J, Anderson WF, Cox A, Cross SS, Reed MW, Provenzano E, Dawson SJ, Dunning AM, Humphreys M, Easton DF, Garcia-Closas M, Caldas C, Pharoah PD, Huntsman D (2010) Subtyping of breast cancer by immunohistochemistry to investigate a relationship between subtype and short and long term survival: a collaborative analysis of data for 10,159 cases from 12 studies. PLoS Med 7:e1000279. https://doi.org/10.1371/journal.pmed.1000279

    Article  Google Scholar 

  4. Braicu C, Chiorean R, Irimie A, Chira S, Tomuleasa C, Neagoe E, Paradiso A, Achimas-Cadariu P, Lazar V, Berindan-Neagoe I (2016) Novel insight into triple-negative breast cancers, the emerging role of angiogenesis, and antiangiogenic therapy. Expert Rev Mol Med 18:e18. https://doi.org/10.1017/erm.2016.17

    Article  CAS  Google Scholar 

  5. Chiorean R, Braicu C, Berindan-Neagoe I (2013) Another review on triple negative breast cancer. Are we on the right way towards the exit from the labyrinth? Breast 22:1026–1033. https://doi.org/10.1016/j.breast.2013.08.007

    Article  Google Scholar 

  6. Barnard ME, Boeke CE, Tamimi RM (2015) Established breast cancer risk factors and risk of intrinsic tumor subtypes. Biochim Biophys Acta 1856:73–85. https://doi.org/10.1016/j.bbcan.2015.06.002

    Article  CAS  Google Scholar 

  7. Huang J, Luo Q, Xiao Y, Li H, Kong L, Ren G (2017) The implication from RAS/RAF/ERK signaling pathway increased activation in epirubicin treated triple negative breast cancer. Oncotarget 8:108249–108260. https://doi.org/10.18632/oncotarget.22604

    Article  Google Scholar 

  8. Braicu C, Raduly L, Morar-Bolba G, Cojocneanu R, Jurj A, Pop LA, Pileczki V, Ciocan C, Moldovan A, Irimie A, Eniu A, Achimas-Cadariu P, Paradiso A, Berindan-Neagoe I (2018) Aberrant miRNAs expressed in HER-2 negative breast cancers patient. J Exp Clin Cancer Res 37:257. https://doi.org/10.1186/s13046-018-0920-2

    Article  CAS  Google Scholar 

  9. Hernandez-Aya LF, Chavez-Macgregor M, Lei X, Meric-Bernstam F, Buchholz TA, Hsu L, Sahin AA, Do K-A, Valero V, Hortobagyi GN, Gonzalez-Angulo AM (2011) Nodal status and clinical outcomes in a large cohort of patients with triple-negative breast cancer. J Clin Oncol 29:2628–2634. https://doi.org/10.1200/JCO.2010.32.1877

    Article  Google Scholar 

  10. Hwa HL, Kuo WH, Chang LY, Wang MY, Tung TH, Chang KJ, Hsieh FJ (2008) Prediction of breast cancer and lymph node metastatic status with tumour markers using logistic regression models. J Eval Clin Pract 14:275–280. https://doi.org/10.1111/j.1365-2753.2007.00849.x

    Article  Google Scholar 

  11. Narrandes S, Huang S, Murphy L, Xu W (2018) The exploration of contrasting pathways in triple negative breast cancer (TNBC). BMC Cancer 18:22. https://doi.org/10.1186/s12885-017-3939-4

    Article  CAS  Google Scholar 

  12. Mehanna J, Haddad FG, Eid R, Lambertini M, Kourie HR (2019) Triple-negative breast cancer: current perspective on the evolving therapeutic landscape. Int J Women's Health 11:431–437. https://doi.org/10.2147/IJWH.S178349

    Article  CAS  Google Scholar 

  13. Cojocneanu Petric R, Braicu C, Raduly L, Zanoaga O, Dragos N, Monroig P, Dumitrascu D, Berindan-Neagoe I (2015) Phytochemicals modulate carcinogenic signaling pathways in breast and hormone-related cancers. Onco Targets Ther 8:2053–2066. https://doi.org/10.2147/OTT.S83597

    Article  Google Scholar 

  14. Xu F, Wang F, Yang T, Sheng Y, Zhong T, Chen Y (2014) Differential drug resistance acquisition to doxorubicin and paclitaxel in breast cancer cells. Cancer Cell Int 14:142–142. https://doi.org/10.1186/s12935-014-0142-4

    Article  CAS  Google Scholar 

  15. Krausz AE, Adler BL, Makdisi J, Schairer D, Rosen J, Landriscina A, Navati M, Alfieri A, Friedman JM, Nosanchuk JD, Rodriguez-Gabin A, Ye KQ, McDaid HM, Friedman AJ (2018) Nanoparticle-encapsulated doxorubicin demonstrates superior tumor cell kill in triple negative breast cancer subtypes intrinsically resistant to doxorubicin. Precis Nanomed 1:173–182. https://doi.org/10.33218/prnano1(3).181029.1

    Article  Google Scholar 

  16. Zhao L, Qi Y, Xu L, Tao X, Han X, Yin L, Peng J (2018) MicroRNA-140-5p aggravates doxorubicin-induced cardiotoxicity by promoting myocardial oxidative stress via targeting Nrf2 and Sirt2. Redox Biol 15:284–296. https://doi.org/10.1016/j.redox.2017.12.013

    Article  CAS  Google Scholar 

  17. Lovitt CJ, Shelper TB, Avery VM (2018) Doxorubicin resistance in breast cancer cells is mediated by extracellular matrix proteins. BMC Cancer 18:41. https://doi.org/10.1186/s12885-017-3953-6

    Article  CAS  Google Scholar 

  18. Jabłońska-Trypuć A, Krętowski R, Kalinowska M, Świderski G, Cechowska-Pasko M, Lewandowski W (2018) Possible mechanisms of the prevention of doxorubicin toxicity by cichoric acid—antioxidant nutrient. Nutrients 10:44

    Article  Google Scholar 

  19. Ascolani G, Lio P (2014) Modeling TGF-beta in early stages of cancer tissue dynamics. PLoS One 9:e88533. https://doi.org/10.1371/journal.pone.0088533

    Article  CAS  Google Scholar 

  20. Worthington JJ, Klementowicz JE, Travis MA (2011) TGFbeta: a sleeping giant awoken by integrins. Trends Biochem Sci 36:47–54. https://doi.org/10.1016/j.tibs.2010.08.002

    Article  CAS  Google Scholar 

  21. Gulei D, Mehterov N, Ling H, Stanta G, Braicu C, Berindan-Neagoe I (2017) The “good-cop bad-cop” TGF-beta role in breast cancer modulated by non-coding RNAs. Biochim Biophys Acta 1861:1661–1675. https://doi.org/10.1016/j.bbagen.2017.04.007

    Article  CAS  Google Scholar 

  22. Ganapathy V, Ge R, Grazioli A, Xie W, Banach-Petrosky W, Kang Y, Lonning S, McPherson J, Yingling JM, Biswas S, Mundy GR, Reiss M (2010) Targeting the transforming growth factor-beta pathway inhibits human basal-like breast cancer metastasis. Mol Cancer 9:122. https://doi.org/10.1186/1476-4598-9-122

    Article  CAS  Google Scholar 

  23. Wang XG, Meng Q, Qi FM, Yang QF (2014) Blocking TGF-β inhibits breast cancer cell invasiveness via ERK/S100A4 signal. Eur Rev Med Pharmacol Sci 18:3844–3853

    CAS  Google Scholar 

  24. Gulei D, Mehterov N, Ling H, Stanta G, Braicu C, Berindan-Neagoe I (2017) The “good-cop bad-cop” TGF-beta role in breast cancer modulated by non-coding RNAs. Biochim Biophys Acta Gen Subj 1861:1661–1675. https://doi.org/10.1016/j.bbagen.2017.04.007

    Article  CAS  Google Scholar 

  25. Lin X, Li L, Wang R, Wilcox D, Zhao X, Song J, Huang X, Hansen TM, Dande P, Wada C, Hubbard RD, Kohlbrenner WM, Fesik SW, Shen Y (2011) A robust in vivo positive-readout system for monitoring siRNA delivery to xenograft tumors. RNA 17:603–612. https://doi.org/10.1261/rna.2546011

    Article  CAS  Google Scholar 

  26. Irimie AI, Braicu C, Cojocneanu-Petric R, Berindan-Neagoe I, Campian RS (2015) Novel technologies for oral squamous carcinoma biomarkers in diagnostics and prognostics. Acta Odontol Scand 73:161–168. https://doi.org/10.3109/00016357.2014.986754

    Article  CAS  Google Scholar 

  27. Irimie AI, Braicu C, Pileczki V, Petrushev B, Soritau O, Campian RS, Berindan-Neagoe I (2016) Knocking down of p53 triggers apoptosis and autophagy, concomitantly with inhibition of migration on SSC-4 oral squamous carcinoma cells. Mol Cell Biochem 419:75–82. https://doi.org/10.1007/s11010-016-2751-9

    Article  CAS  Google Scholar 

  28. Pileczki V, Braicu C, Gherman CD, Berindan-Neagoe I (2012) TNF-alpha gene knockout in triple negative breast cancer cell line induces apoptosis. Int J Mol Sci 14:411–420. https://doi.org/10.3390/ijms14010411

    Article  CAS  Google Scholar 

  29. Buduru S, Zimta AA, Ciocan C, Braicu C, Dudea D, Irimie AI, Berindan-Neagoe I (2018) RNA interference: new mechanistic and biochemical insights with application in oral cancer therapy. Int J Nanomed 13:3397–3409. https://doi.org/10.2147/ijn.S167383

    Article  CAS  Google Scholar 

  30. Pileczki V, Pop L, Braicu C, Budisan L, Bolba Morar G, Del C Monroig-Bosque P, Sandulescu RV, Berindan-Neagoe I (2016) Double gene siRNA knockdown of mutant p53 and TNF induces apoptosis in triple-negative breast cancer cells. Onco Targets Ther 9:6921–6933. https://doi.org/10.2147/ott.S110719

    Article  CAS  Google Scholar 

  31. Braicu C, Pileczki V, Irimie A, Berindan-Neagoe I (2013) p53siRNA therapy reduces cell proliferation, migration and induces apoptosis in triple negative breast cancer cells. Mol Cell Biochem 381:61–68. https://doi.org/10.1007/s11010-013-1688-5

    Article  CAS  Google Scholar 

  32. Berindan-Neagoe I, Braicu C, Irimie A (2012) Combining the chemotherapeutic effects of epigallocatechin 3-gallate with siRNA-mediated p53 knock-down results in synergic pro-apoptotic effects. Int J Nanomed 7:6035–6047. https://doi.org/10.2147/ijn.S36523

    Article  CAS  Google Scholar 

  33. Gorini S, De Angelis A, Berrino L, Malara N, Rosano G, Ferraro E (2018) Chemotherapeutic drugs and mitochondrial dysfunction: focus on doxorubicin, trastuzumab, and sunitinib. Oxidative Med Cell Longev 2018:7582730–7582730. https://doi.org/10.1155/2018/7582730

    Article  CAS  Google Scholar 

  34. Ding MJ, Su KE, Cui GZ, Yang WH, Chen L, Yang M, Liu YQ, Dai DL (2016) Association between transforming growth factor-beta1 expression and the clinical features of triple negative breast cancer. Oncol Lett 11:4040–4044. https://doi.org/10.3892/ol.2016.4497

    Article  CAS  Google Scholar 

  35. Menendez D, Shatz M, Resnick MA (2013) Interactions between the tumor suppressor p53 and immune responses. Curr Opin Oncol 25:85–92. https://doi.org/10.1097/CCO.0b013e32835b6386

    Article  CAS  Google Scholar 

  36. Liu Z, Jiang Z, Gao Y, Wang L, Chen C, Wang X (2019) TP53 mutations promote immunogenic activity in breast cancer. J of Oncol 2019:5952836–5952836. https://doi.org/10.1155/2019/5952836

    Article  CAS  Google Scholar 

  37. Braicu C, Buse M, Busuioc C, Drula R, Gulei D, Raduly L, Rusu A, Irimie A, Atanasov AG, Slaby O, Ionescu C, Berindan-Neagoe I (2019) A comprehensive review on MAPK: a promising therapeutic target in cancer. Cancers (Basel). https://doi.org/10.3390/cancers11101618

    Article  Google Scholar 

  38. Palmieri D, Duchnowska R, Woditschka S, Hua E, Qian Y, Biernat W, Sosinska-Mielcarek K, Gril B, Stark AM, Hewitt SM, Liewehr DJ, Steinberg SM, Jassem J, Steeg PS (2014) Profound prevention of experimental brain metastases of breast cancer by temozolomide in an MGMT-dependent manner. Clin Cancer Res 20:2727–2739. https://doi.org/10.1158/1078-0432.ccr-13-2588

    Article  CAS  Google Scholar 

  39. Neto JC, Ikoma MM, Carvalho KC, Vassallo J, De Brot M, Gobbi H, Soares FA, Rocha RM (2012) MGMT and PTEN as potential prognostic markers in breast cancer. Exp Mol Pathol 92:20–26. https://doi.org/10.1016/j.yexmp.2011.09.019

    Article  CAS  Google Scholar 

  40. Delou JMdA, Vignal GM, Índio-do-Brasil V, Accioly MTdS, da Silva TSL, Piranda DN, Sobral-Leite M, de Carvalho MA, Capella MAM, Vianna-Jorge R (2017) Loss of constitutive ABCB1 expression in breast cancer associated with worse prognosis. Breast Cancer (Dove Medical Press) 9:415–428. https://doi.org/10.2147/BCTT.S131284

    Article  CAS  Google Scholar 

  41. Hientz K, Mohr A, Bhakta-Guha D, Efferth T (2017) The role of p53 in cancer drug resistance and targeted chemotherapy. Oncotarget 8:8921–8946. https://doi.org/10.18632/oncotarget.13475

    Article  Google Scholar 

  42. von Manstein V, Yang CM, Richter D, Delis N, Vafaizadeh V, Groner B (2013) Resistance of cancer cells to targeted therapies through the activation of compensating signaling loops. Curr Signal Transduct Ther 8:193–202. https://doi.org/10.2174/1574362409666140206221931

    Article  CAS  Google Scholar 

  43. Hartman ZC, Poage GM, den Hollander P, Tsimelzon A, Hill J, Panupinthu N, Zhang Y, Mazumdar A, Hilsenbeck SG, Mills GB, Brown PH (2013) Growth of triple-negative breast cancer cells relies upon coordinate autocrine expression of the proinflammatory cytokines IL-6 and IL-8. Cancer Res 73:3470–3480. https://doi.org/10.1158/0008-5472.Can-12-4524-t

    Article  CAS  Google Scholar 

  44. Poage GM, Hartman ZC, Brown PH (2013) Revealing targeted therapeutic opportunities in triple-negative breast cancers: a new strategy. Cell Cycle 12:2705–2706. https://doi.org/10.4161/cc.25871

    Article  CAS  Google Scholar 

  45. Wang K, Zhu X, Zhang K, Yin Y, Chen Y, Zhang T (2018) Interleukin-6 contributes to chemoresistance in MDA-MB-231 cells via targeting HIF-1alpha. J Biochem Mol Toxicol 32:e22039. https://doi.org/10.1002/jbt.22039

    Article  CAS  Google Scholar 

  46. Amara D, Wolf DM, Van’t Veer L, Esserman L, Campbell M, Yau C (2017) Co-expression modules identified from published immune signatures reveal five distinct immune subtypes in breast cancer. Breast Cancer Res Treat 161:41–50. https://doi.org/10.1007/s10549-016-4041-3

    Article  CAS  Google Scholar 

  47. Tulsyan S, Mittal RD, Mittal B (2016) The effect of ABCB1 polymorphisms on the outcome of breast cancer treatment. Pharmacogenomics and personalized medicine 9:47–58. https://doi.org/10.2147/PGPM.S86672

    Article  CAS  Google Scholar 

  48. Oba T, Izumi H, Ito K-I (2016) ABCB1 and ABCC11 confer resistance to eribulin in breast cancer cell lines. Oncotarget 7:70011–70027. https://doi.org/10.18632/oncotarget.11727

    Article  Google Scholar 

  49. Etemadmoghadam D, Weir BA, Au-Yeung G, Alsop K, Mitchell G, George J, Australian Ovarian Cancer Study G, Davis S, D'Andrea AD, Simpson K, Hahn WC, Bowtell DDL (2013) Synthetic lethality between CCNE1 amplification and loss of BRCA1. Proc Natl Acad Sci U S A 110:19489–19494. https://doi.org/10.1073/pnas.1314302110

    Article  CAS  Google Scholar 

  50. Wei C-Y, Tan Q-X, Zhu X, Qin Q-H, Zhu F-B, Mo Q-G, Yang W-P (2015) Expression of CDKN1A/p21 and TGFBR2 in breast cancer and their prognostic significance. Int J Clin Exp Pathol 8:14619–14629

    CAS  Google Scholar 

  51. Guiu S, Charon-Barra C, Vernerey D, Fumoleau P, Campone M, Spielmann M, Roché H, Mesleard C, Arnould L, Lemonnier J, Lacroix-Triki M (2015) Coexpression of androgen receptor and FOXA1 in nonmetastatic triple-negative breast cancer: ancillary study from PACS08 trial. Future Oncol 11:2283–2297. https://doi.org/10.2217/fon.15.102

    Article  CAS  Google Scholar 

  52. Nadler Y, González AM, Camp RL, Rimm DL, Kluger HM, Kluger Y (2010) Growth factor receptor-bound protein-7 (Grb7) as a prognostic marker and therapeutic target in breast cancer. Ann Oncol 21:466–473. https://doi.org/10.1093/annonc/mdp346

    Article  CAS  Google Scholar 

  53. de Silva HC, Lin MZ, Phillips L, Martin JL, Baxter RC (2019) IGFBP-3 interacts with NONO and SFPQ in PARP-dependent DNA damage repair in triple-negative breast cancer. Cell Mol Life Sci 76:2015–2030. https://doi.org/10.1007/s00018-019-03033-4

    Article  CAS  Google Scholar 

  54. Malone MK, Smrekar K, Park S, Blakely B, Walter A, Nasta N, Park J, Considine M, Danilova LV, Pandey NB, Fertig EJ, Popel AS, Jin K (2020) Cytokines secreted by stromal cells in TNBC microenvironment as potential targets for cancer therapy. Cancer Biol Ther. https://doi.org/10.1080/15384047.2020.1739484

    Article  Google Scholar 

  55. Jing X, Liang H, Hao C, Yang X, Cui X (2019) Overexpression of MUC1 predicts poor prognosis in patients with breast cancer. Oncol Rep 41:801–810. https://doi.org/10.3892/or.2018.6887

    Article  CAS  Google Scholar 

  56. Hata T, Rajabi H, Takahashi H, Yasumizu Y, Li W, Jin C, Long MD, Hu Q, Liu S, Fushimi A, Yamashita N, Kui L, Hong D, Yamamoto M, Miyo M, Hiraki M, Maeda T, Suzuki Y, Samur MK, Kufe D (2019) MUC1-C activates the NuRD complex to drive dedifferentiation of triple-negative breast cancer cells. Cancer Res 79:5711–5722. https://doi.org/10.1158/0008-5472.Can-19-1034

    Article  CAS  Google Scholar 

  57. Rohrberg J, Van de Mark D, Amouzgar M, Lee JV, Taileb M, Corella A, Kilinc S, Williams J, Jokisch ML, Camarda R, Balakrishnan S, Shankar R, Zhou A, Chang AN, Chen B, Rugo HS, Dumont S, Goga A (2020) MYC dysregulates mitosis, revealing cancer vulnerabilities. Cell Rep 30:3368–3382.e7. https://doi.org/10.1016/j.celrep.2020.02.041

    Article  CAS  Google Scholar 

  58. Jiang J, Thyagarajan-Sahu A, Loganathan J, Eliaz I, Terry C, Sandusky GE, Sliva D (2012) BreastDefend™ prevents breast-to-lung cancer metastases in an orthotopic animal model of triple-negative human breast cancer. Oncol Rep 28:1139–1145. https://doi.org/10.3892/or.2012.1936

    Article  Google Scholar 

  59. Jin T, Suk Kim H, Ki Choi S, Hye Hwang E, Woo J, Suk Ryu H, Kim K, Moon A, Kyung Moon W (2017) microRNA-200c/141 upregulates SerpinB2 to promote breast cancer cell metastasis and reduce patient survival. Oncotarget 8:32769–32782. https://doi.org/10.18632/oncotarget.15680

    Article  Google Scholar 

  60. Schäfer SA, Hülsewig C, Barth P, von Wahlde MK, Tio J, Kolberg HC, Bernemann C, Blohmer JU, Kiesel L, Kolberg-Liedtke C (2019) Correlation between SFRP1 expression and clinicopathological parameters in patients with triple-negative breast cancer. Future Oncol 15:1921–1938. https://doi.org/10.2217/fon-2018-0564

    Article  CAS  Google Scholar 

  61. Kavanagh E, Joseph B (2011) The hallmarks of CDKN1C (p57, KIP2) in cancer. Biochem Biophys Acta 1816:50–56. https://doi.org/10.1016/j.bbcan.2011.03.002

    Article  CAS  Google Scholar 

  62. Domagala P, Hybiak J, Rys J, Byrski T, Cybulski C, Lubinski J (2016) Pathological complete response after cisplatin neoadjuvant therapy is associated with the downregulation of DNA repair genes in BRCA1-associated triple-negative breast cancers. Oncotarget 7:68662–68673. https://doi.org/10.18632/oncotarget.11900

    Article  Google Scholar 

  63. Barroso-Sousa R, Keenan TE, Pernas S, Exman P, Jain E, Garrido-Castro AC, Hughes ME, Bychkovsky B, Umeton R, Files JL, Lindeman NI, MacConaill LE, Hodi FS, Krop I, Dillon DA, Winer EP, Wagle N, Lin NU, Mittendorf EA, Van Allen EM, Tolaney SM (2020) Tumor mutational burden and PTEN alterations as molecular correlates of response to PD-1/L1 blockade in metastatic triple-negative breast cancer. Clin Cancer Res. https://doi.org/10.1158/1078-0432.Ccr-19-3507

    Article  Google Scholar 

  64. Keniry M, Parsons R (2008) The role of PTEN signaling perturbations in cancer and in targeted therapy. Oncogene 27:5477–5485. https://doi.org/10.1038/onc.2008.248

    Article  CAS  Google Scholar 

Download references

Funding

This paper was published under the frame of European Social Found, Human Capital Operational Programme 2014–2020, Project No. POCU/380/6/13/125171, and PNCDI III 2015–2020 “Increasing the performance of scientific research and technology transfer in translational medicine through the formation of a new generation of young researchers”—ECHITAS, no. 29PFE/ 18.10. 2018. Cristina Alexandra Ciocan-Cȃrtiţă received a grant for doctoral research Grant Number 1300/11/13.01.2017.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization was done by CACC, IBN, CB; contributions to methodology were done by AJ, CACC, LR, RC, AM, VP, LB; software was provided by RC, LAP, CB; validation was done by AJ, CB; formal analysis was carried out LAP, CB; investigation was done by IBN.; resources were gathered by IBN, CB; data curation was performed by RC; writing—original draft preparation—was done by AJ, CACC; writing—review and editing—was done by CB, IBN, SSK; visualization was carried out by CB, RC; supervision was done by IBN; editing was done by SSK; project administration was done by IBN; funding was acquired by IBN, CACC, CB.

Corresponding authors

Correspondence to Cornelia Braicu or Ioana Berindan-Neagoe.

Ethics declarations

Conflict of interests

The authors declare that they have no conflict of interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 109 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ciocan-Cȃrtiţă, C.A., Jurj, A., Raduly, L. et al. New perspectives in triple-negative breast cancer therapy based on treatments with TGFβ1 siRNA and doxorubicin. Mol Cell Biochem 475, 285–299 (2020). https://doi.org/10.1007/s11010-020-03881-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-020-03881-w

Keywords

Navigation