Skip to main content

Advertisement

Log in

Epidermal growth factor receptor-mediated regulation of matrix metalloproteinase-2 and matrix metalloproteinase-9 in MCF-7 breast cancer cells

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

In breast cancer, increased epidermal growth factor receptor (EGFR) expression and phosphorylation have been correlated with increased invasive potential and poor prognosis. Interaction of EGFR with its ligand epidermal growth factor (EGF) activates cellular signalling cascades promoting tumour invasion. Matrix metalloproteinase-2 (MMP-2) and matrix metalloproteinase-9 (MMP-9) are upregulated in most cancers and play crucial roles in modulating invasion and metastasis. EGFR-mediated regulation of MMP-2 and MMP-9 in breast cancer was investigated using metastatic human breast ductal carcinoma cell line MCF-7. Culture of MCF-7 cells on 1 µg/ml EGF-coated culture dishes for 24 h led to appreciable increase in MMP-2 and MMP-9 expression and activity. Expression of membrane type-1 matrix metalloproteinase (MT1-MMP) and focal adhesion kinase (FAK), phosphorylation of EGFR and phosphatidylinositol 3′ kinase (PI3K), and nuclear translocation of EGFR and cellular migration were also appreciably increased. Targeting EGFR–EGF interactions by treatment of MCF-7 cells with anti-EGFR monoclonal antibodies prior to culture on EGF prevented appreciable upregulation of MMP-2 and MMP-9 expression and activity. Increased expression of MT1-MMP and FAK, phosphorylation of EGFR and PI3K and enhanced cell migration were also inhibited. Treatment of cells with PI3K inhibitor LY294002 prevented upregulation of MMP-2 and MMP-9 indicating that EGFR-mediated signalling for MMP regulation occurs through PI3K. As increased EGFR activity has been observed in highly invasive breast cancers, targeting EGFR–EGF interactions might render such cancers less invasive by inhibiting EGFR-mediated upregulation of MMP-2 and MMP-9 and therefore could be of importance in their clinical management.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Alanazi IO, Khan Z (2016) Understanding EGFR signaling in breast cancer and breast cancer stem cells: overexpression and therapeutic implications. Asian Pac J Cancer Prev 17:445–453

    Article  PubMed  Google Scholar 

  2. Dimitrakopoulos FI, Kottorou A, Antonacopoulou AG, Makatsoris T, Kalofonos HP (2015) Early-stage breast cancer in the elderly: confronting an old clinical problem. J Breast Cancer 18:207–217

    Article  PubMed  PubMed Central  Google Scholar 

  3. Indiastat: Revealing india statistically. http://www.indiastat.com/. Accessed Jan 2018

  4. DiGiovanna MP, Stern DF, Edgerton SM, Whalen SG, Moore D 2nd, Thor AD (2005) Relationship of epidermal growth factor receptor expression to ErbB-2 signaling activity and prognosis in breast cancer patients. J Clin Oncol 23:1152–1160

    Article  CAS  PubMed  Google Scholar 

  5. Guo P, Pu T, Chen S, Qiu Y, Zhong X, Zheng H, Chen L, Bu H, Ye F (2017) Breast cancers with EGFR and HER2 co-amplification favor distant metastasis and poor clinical outcome. Oncol Lett 14:6562–6570

    PubMed  PubMed Central  Google Scholar 

  6. Magkou C, Nakopoulou L, Zoubouli C, Karali K, Theohari I, Bakarakos P, Giannopoulou I (2008) Expression of the epidermal growth factor receptor (EGFR) and the phosphorylated EGFR in invasive breast carcinomas. Breast Cancer Res 10:R49

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Dawson JP, Berger MB, Lin CC, Schlessinger J, Lemmon MA, Ferguson KM (2005) Epidermal growth factor receptor dimerization and activation require ligand induced conformational changes in the dimer interface. Mol Cell Biol 25:7734–7742

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Herbst RS (2004) Review of epidermal growth factor receptor biology. Int J Radiat Oncol Biol Phys 59:21–26

    Article  CAS  PubMed  Google Scholar 

  9. Seshacharyulu P, Ponnusamy MP, Haridas D, Jain M, Ganti AK, Batra SK (2012) Targeting the EGFR signaling pathway in cancer therapy. Expert Opin Ther Targets 16:15–31

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Yarden Y, Sliwkowski MX (2001) Untangling theErbB signalling network. Nat Rev Mol Cell Biol 2:127–137

    Article  CAS  PubMed  Google Scholar 

  11. Hudson LG, Moss NM, Stack MS (2009) EGF receptor regulation of matrix metalloproteinases in epithelial ovarian carcinoma. Future Oncol 5:323–338

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Jin Y, Zhang W, Wang H, Zhang Z, Chu C, Liu X, Zou Q (2016) EGFR/HER2 inhibitors effectively reduce the malignant potential of MDR breast cancer evoked by P-gp substrates in vitro and in vivo. Oncol Rep 35:771–778

    Article  CAS  PubMed  Google Scholar 

  13. Holdman XB, Welte T, Rajapakshe K, Pond A, Coarfa C, Mo Q, Huang S, Hilsenbeck SG, Edwards DP, Zhang X, Rosen JM (2015) Upregulation of EGFR signaling is correlated with tumor stroma remodeling and tumor recurrence in FGFR1-driven breast cancer. Breast Cancer Res 17:141

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Deryugina EI, Quigley JP (2006) Matrix metalloproteinases and tumor metastasis. Cancer Metastasis Rev 25:9–34

    Article  CAS  PubMed  Google Scholar 

  15. Egeblad M, Werb Z (2002) New functions for the matrix metalloproteinases in cancer progression. Nat Rev Cancer 2:161–174

    Article  CAS  PubMed  Google Scholar 

  16. Kessenbrock K, Plaks V, Werb Z (2010) Matrix metalloproteinases: regulators of the tumor microenvironment. Cell 141:52–67

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Nagase H, Visse R, Murphy G (2006) Structure and function of matrix metalloproteinases and TIMPs. Cardiovasc Res 69:562 – 573

    Article  CAS  Google Scholar 

  18. Visse R, Nagase H (2003) Matrix metalloproteinases and tissue inhibitors of metalloproteinases: structure, function, and biochemistry. Circ Res 92:827–839

    Article  CAS  PubMed  Google Scholar 

  19. Seiki M, Koshikawa N, Yana I (2003) Role of pericellular proteolysis by membrane-type 1 matrix metalloproteinase in cancer invasion and angiogenesis. Cancer Metastasis Rev 22:129–143

    Article  CAS  PubMed  Google Scholar 

  20. Yoon SO, Park SJ, Yun CH, Chung AS (2003) Roles of matrix metalloproteinases in tumor metastasis and angiogenesis. J Biochem Mol Biol 36:128–137

    CAS  PubMed  Google Scholar 

  21. Tauro M, Shay G, Sansil SS, Laghezza A, Tortorella P, Neuger AM, Soliman H, Lynch CC (2017) Bone-seeking matrix metalloproteinase-2 inhibitors prevent bone metastatic breast cancer growth. Mol Cancer Ther 16:494–505

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Turpeenniemi-Hujanen T (2005) Gelatinases (MMP-2 and -9) and their natural inhibitors as prognostic indicators in solid cancers. Biochimie 87:287–297

    Article  CAS  PubMed  Google Scholar 

  23. Dong W, Li H, Zhang Y, Yang H, Guo M, Li L, Liu T (2011) Matrix metalloproteinase 2 promotes cell growth and invasion in colorectal cancer. Acta Biochim Biophys Sin (Shanghai) 43:840–848

    Article  CAS  Google Scholar 

  24. Cox G, Jones JL, O’Byrne KJ (2000) Matrix metalloproteinase 9 and the epidermal growth factor signal pathway in operable non-small cell lung cancer. Clin Cancer Res 6:2349–2355

    CAS  PubMed  Google Scholar 

  25. Kim D, Rhee S (2016) Matrix metalloproteinase-2 regulates MDA-MB-231 breast cancer cell invasion induced by active mammalian diaphanous-related formin 1. Mol Med Rep 14:277–282

    Article  CAS  PubMed  Google Scholar 

  26. Banerji A, Chakrabarti J, Mitra A, Chatterjee A (2005) Cell membrane-associated MT1-MMP dependant activation of pro-MMP-2 in A375 melanoma cells. J Environ Pathol Toxicol Oncol 24:3–17

    Article  CAS  PubMed  Google Scholar 

  27. Strongin AY, Collier I, Bannikov G, Marmer BL, Grant GA, Goldberg GI (1995) Mechanism of cell surface activation of 72-kDa type IV collagenase. Isolation of the activated form of the membrane metalloprotease. J Biol Chem 270:5331–5338

    Article  CAS  PubMed  Google Scholar 

  28. Brown PD, Bloxidge RE, Anderson E, Howell A (1993) Expression of activated gelatinase in human invasive breast carcinoma. Clin Exp Metastasis 11:183–189

    Article  CAS  PubMed  Google Scholar 

  29. Duffy MJ, Maguire TM, Hill A, McDermott E, O’Higgins N (2000) Metalloproteinases: role in breast carcinogenesis, invasion and metastasis. Breast Cancer Res 2:252–257

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Nutt JE, Durkan GC, Mellon JK, Lunec J (2003) Matrix metalloproteinases (MMPs) in bladder cancer: the induction of MMP9 by epidermal growth factor and its detection in urine. BJU Int 91:99–104

    Article  CAS  PubMed  Google Scholar 

  31. Kheradmand F, Rishi K, Werb Z (2002) Signaling through the EGF receptor controls lung morphogenesis in part by regulating MT1-MMP-mediated activation of gelatinase A/MMP2. J Cell Sci 115:839–848

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Kajanne R, Miettinen P, Mehlem A, Leivonen SK, Birrer M, Foschi M, Kähäri VM, Leppä S (2007) EGF-R regulates MMP function in fibroblasts through MAPK and AP-1 pathways. J Cell Physiol 212:489–497

    Article  CAS  PubMed  Google Scholar 

  33. Reddy KB, Krueger JS, Kondapaka SB, Diglio CA (1999) Mitogen-activated protein kinase (MAPK) regulates the expression of progelatinase B (MMP-9) in breast epithelial cells. Int J Cancer 82:268–273

    Article  CAS  PubMed  Google Scholar 

  34. Majumder A, Banerji A (2016) Epidermal growth factor receptor regulates matrix metalloproteinase-2 activity in MDA-MB-231 human breast cancer cells. Br Biotechnol J 16:1–9

    Article  Google Scholar 

  35. Sieg DJ, Hauck CR, Ilic D, Klingbeil CK, Schaefer E, Damsky CH, Schlaepfer DD (2000) FAK integrates growth-factor and integrin signals to promote cell migration. Nat Cell Biol 2:249–256

    Article  CAS  PubMed  Google Scholar 

  36. Mitra SK, Hanson DA, Schlaepfer DD (2005) Focal adhesion kinase: in command and control of cell motility. Nat Rev Mol Cell Biol 6:56–68

    Article  CAS  PubMed  Google Scholar 

  37. Tomar A, Schlaepfer DD (2010) A PAK-activated linker for EGFR and FAK. Dev Cell 18:170–172

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Tai YL, Chen LC, Shen TL (2015) Emerging roles of focal adhesion kinase in cancer. Biomed Res Int 2015:690690

    PubMed  PubMed Central  Google Scholar 

  39. Giancotti FG, Ruoslahti E (1999) Integrin Signal Sci 285:1028–1032

    CAS  Google Scholar 

  40. Juliano RL (2002) Signal transduction by cell adhesion receptors and the cytoskeleton: functions of integrins, cadherins, selectins and immunoglobulin superfamily members. Annu Rev Pharmacol Toxicol 42:283–323

    Article  CAS  PubMed  Google Scholar 

  41. Long W, Yi P, Amazit L, LaMarca HL, Ashcroft F, Kumar R, Mancini MA, Tsai SY, Tsai MJ, O’Malley BW (2010) SRC-3∆4 mediates the interaction of EGFR with FAK to promote cell migration. Mol Cell 37:321–332

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Das S, Banerji A, Frei E, Chatterjee A (2008) Rapid expression and activation of MMP-2 and MMP-9 upon exposure of human breast cancer cells (MCF-7) to fibronectin in serum free medium. Life Sci 82:467–476

    Article  CAS  PubMed  Google Scholar 

  43. Zeng ZZ, Jia Y, Hahn NJ, Markwart SM, Rockwood KF, Livant DL (2006) Role of focal adhesion kinase and phosphatidylinositol 3′-kinase in integrin fibronectin receptor-mediated, matrix metalloproteinase-1-dependent invasion by metastatic prostate cancer cells. Cancer Res 66:8091–8099

    Article  CAS  PubMed  Google Scholar 

  44. Woo JK, Jung HJ, Park JY, Kang JH, Lee BI, Shin D, Nho CW, Cho SY, Seong JK, Oh SH (2017) Daurinol blocks breast and lung cancer metastasis and development by inhibition of focal adhesion kinase (FAK). Oncotarget 8:57058–57071

    PubMed  PubMed Central  Google Scholar 

  45. Shimokawa K, Nagase H (2001) Purification of MMPs and TIMPs. In: Clark IM (ed) Matrix metalloproteinase protocols. Humana Press (Springer), New York, pp 275–304

    Google Scholar 

  46. Hartree EF (1972) Determination of protein: a modification of the Lowry method that gives a linear photometric response. Anal Biochem 48:422–427

    Article  CAS  PubMed  Google Scholar 

  47. Koivunen E, Restel BH, Rajotte D, Lahdenranta J, Hagedorn M, Arap W, Pasqualini R (1999) Integrin-binding peptides derived from phage display libraries. In: Howlett A (ed) Integrin protocols. Humana Press (Springer), New York, pp 3–15

    Chapter  Google Scholar 

  48. Hawkes SP, Li H, Taniguchi GT (2001) Zymography and reverse zymography for detecting MMPs, and TIMPs. In: Clark IM (ed) Matrix metalloproteinase protocols. Humana Press (Springer), New York, pp 399–410

    Google Scholar 

  49. Rodriguez LG, Wu X, Guan JL (2005) Wound-healing assay. Methods Mol Biol 294:23–29

    PubMed  Google Scholar 

  50. Lakka SS, Jasti SL, Gondi C, Boyd D, Chandrasekar N, Dinh DH, Olivero WC, Gujrati M, Rao JS (2002) Downregulation of MMP-9 in ERK-mutated stable transfectants inhibits glioma invasion in vitro. Oncogene 21:5601–5608

    Article  CAS  PubMed  Google Scholar 

  51. Webb AH, Gao BT, Goldsmith ZK, Irvine AS, Saleh N, Lee RP, Lendermon JB, Bheemreddy R, Zhang Q, Brennan RC, Johnson D, Steinle JJ, Wilson MW, Morales-Tirado VM (2017) Inhibition of MMP-2 and MMP-9 decreases cellular migration, and angiogenesis in in vitro models of retinoblastoma. BMC Cancer 17:434

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Castillo-Sanchez R, Villegas-Comonfort S, Galindo-Hernandez O, Gomez R, Salazar EP (2013) Benzo-[a]-pyrene induces FAK activation and cell migration in MDA-MB-231 breast cancer cells. Cell Biol Toxicol 29:303–319

    Article  CAS  PubMed  Google Scholar 

  53. Qin J, Tang J, Jiao L, Ji J, Chen WD, Feng GK, Gao YH, Zhu XF, Deng R (2013) A diterpenoid compound, excisanin A, inhibits the invasive behavior of breast cancer cells by modulating the integrin β1/FAK/PI3K/AKT/β-catenin signalling. Life Sci 93:655–663

    Article  CAS  PubMed  Google Scholar 

  54. Pal S, Moulik S, Dutta A, Chatterjee A (2014) Extracellular matrix protein laminin induces matrix metalloproteinase-9 in human breast cancer cell line MCF-7. Cancer Microenviron 7:71–78

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Yang XL, Lin FJ, Guo YJ, Shao ZM, Ou ZL (2014) Gemcitabine resistance in breast cancer cells regulated by PI3K/AKT-mediated cellular proliferation exerts negative feedback via the MEK/MAPK and mTOR pathways. Onco Targets Ther 7:1033–1042

    PubMed  PubMed Central  Google Scholar 

  56. Kuang W, Deng Q, Deng C, Li W, Shu S, Zhou M (2017) Hepatocyte growth factor induces breast cancer cell invasion via the PI3K/Akt and p38 MAPK signaling pathways to up-regulate the expression of COX2. Am J Transl Res 9:3816–3826

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We are thankful to the Department of Science and Technology, Government of West Bengal [903(Sanc.)/ST/P/S&T/9G-19/2013] for financial support and to Rev. Fr. Dr. Dominic Savio S.J., Principal, St. Xavier’s College (Autonomous), Kolkata for providing facilities, support and encouragement.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aniruddha Banerji.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Research involving human participants and/or animals

This article does not contain any studies with human participants or animals performed by any of the authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Majumder, A., Ray, S. & Banerji, A. Epidermal growth factor receptor-mediated regulation of matrix metalloproteinase-2 and matrix metalloproteinase-9 in MCF-7 breast cancer cells. Mol Cell Biochem 452, 111–121 (2019). https://doi.org/10.1007/s11010-018-3417-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-018-3417-6

Keywords

Navigation