Skip to main content

Advertisement

Log in

Regulation of apoptotic and inflammatory signaling pathways in hepatocellular carcinoma via Caesalpinia gilliesii galactomannan

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

A polysaccharide characterized as galactomannan (GMann) with a molecular weight of 117.76 kDa was isolated from the aqueous extract of Caesalpinia gilliesii (C. gilliesii) seeds then assessed for antiproliferative potential against human hepatocellular carcinoma cell line (HepG2). Further, HCC was induced in Wister albino rats by Diethylnitrosamine (DEN) ip injection (200 mg/kg bw), and CCl4 orally (2 ml/kg bw) for two months then subjected to GMann orally treatment (2 mg/kg bw) for one month. In results, isolated GMann is constituted of sugars (89.99 ± 2.3%), moisture (6.89 ± 0.45%), ash (0.06 ± 0.2%), and protein (2.81%) and composed mainly of mannose and galactose in ratio M/G 3.79. In vitro study, data revealed a concentration-dependent potency of GMann to induce cell death of HepG2 cells with IC50 value of 0.375 µg/ml. Mechanistic studies revealed the potential of GMann to arrest cell cycle at G2/M phase with induction of apoptosis. Biochemical results in vivo showed a significant reduction in serum transaminases (ALT and AST) as well as hepatic malondialdehyde (MDA) and nitric oxide (NOx). Molecular analysis declared a significant down-regulation in mRNA gene expression of both nuclear factor kappa-B (NF-κB) and tumor necrosis factor (TNF-α). Furthermore, a significant down-regulation in the cellular oncogene-fos (C-fos) and marked up-regulation in Glycogen synthase kinase-3 (GSK-3β) level were observed. These results were supported with histopathological investigation. Whereas GMann improved inflammatory and apoptotic markers, it could be a promising new therapeutic agent for HCC suppression and this warrant further development as a possible drug candidate for HCC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Abbreviations

ALT :

Alanine transaminase

AST :

Aspartate transaminases

C. gilliesii :

Caesalpinia gilliesii

C-fos :

Cellular Oncogene Fos

DEN :

Diethylnitrosamine

GMann :

Galactomannan

GSK-3β :

Glycogen synthase kinase-3

HCC :

Hepatocellular carcinoma

HepG2 :

Human hepatocellular carcinoma cell line

MDA :

Malondialdehyde

NF-κB :

Nuclear factor kappa-B

NOx :

Nitric oxide

TNF-α:

Tumor necrosis factor-α

References

  1. Qiu J, Peng B, Tang Y, Qian Y, Guo P, Li M, Luo J, Chen B, Tang H, Lu C, Cai M, Ke Z, He W, Zheng Y, Xie D, Li B, Yuan YCpG (2017) Methylation signature predicts recurrence in early-stage hepatocellular carcinoma: results from a multicenter study. J Clin Oncol 35:734–742. https://doi.org/10.1200/JCO.2016.68.2153

    Article  CAS  PubMed  Google Scholar 

  2. Wang J (2012) Estimation of phosphorus bioavailability in the water column of the Bronx River, New York. J Environ Prot 3:316–323. https://doi.org/10.4236/jep.2012.34040

    Article  CAS  Google Scholar 

  3. Kudo M (2015) Surveillance, diagnosis, treatment, and outcome of liver cancer in Japan. Liver Cancer 4:39–50. https://doi.org/10.1159/000367727

    Article  PubMed  PubMed Central  Google Scholar 

  4. Ryoo I, Lee S, Kwak M (2016) Redox modulating NRF2: a potential mediator of cancer stem cell resistance. Oxid Med Cell Long https://doi.org/10.1155/2016/2428153

    Article  Google Scholar 

  5. Chen L, Liu J, Zhang Y, Dai B, An Y, Yu L (2015) Structural, thermal, and anti-inflammatory properties of a novel pectic polysaccharide from alfalfa (Medicago sativa L.) Stem. J Agric Food Chem 63:3219–3228. https://doi.org/10.1021/acs.jafc.5b00494

    Article  CAS  PubMed  Google Scholar 

  6. Zhuge Z, Dong Y, Li L, Jin T (2017) Effects of astragalus polysaccharide on the adhesion-related immune response of endothelial cells stimulated with CSFV in vitro. PeerJ 5:e3862. https://doi.org/10.7717/peerj.3862

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Woo HG, Choi J, Yoon S, Jee BA, Cho EJ, Lee J, Yoon J, Yi N, Lee K, Suh K, Kim YJ, (2017) Regulation of the transcriptome in liver cancer. Nat Commun. https://doi.org/10.1038/s41467-017-00991-w

    Article  PubMed  PubMed Central  Google Scholar 

  8. Matthews N, Watkins JF (1978) Tumour-necrosis factor from the rabbit. I. Mode of action, specificity and physicochemical properties. Br J Cancer 38:302–309

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Aggarwal BB (2003) Signalling pathways of the TNF superfamily: a double-edged sword. Nat Rev Immunol 3:745–756. https://doi.org/10.1038/nri1184

    Article  CAS  PubMed  Google Scholar 

  10. Yoshino Y, Ishioka C (2015) Inhibition of glycogen synthase kinase-3 beta induces apoptosis and mitotic catastrophe by disrupting centrosome regulation in cancer cells. Nat Publ Gr https://doi.org/10.1038/srep13249

    Article  Google Scholar 

  11. Grimes CA, Jope RS (2001) The multifaceted roles of glycogen synthase kinase 3beta in cellular signaling. Prog Neurobiol 65:391–426

    Article  CAS  PubMed  Google Scholar 

  12. Watcharasit P, Bijur GN, Song L, Zhu J, Chen X, Jope RS (2003) Glycogen synthase kinase-3beta (GSK3beta) binds to and promotes the actions of p53. J Biol Chem 278:48872–48879. https://doi.org/10.1074/jbc.M305870200

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Brenner D, Blaser H, Mak TW (2015) Regulation of tumour necrosis factor signalling: live or let die. Nat Rev Immunol 15:362–374. https://doi.org/10.1038/nri3834

    Article  CAS  PubMed  Google Scholar 

  14. Liu L, Eisenman RN (2012) Regulation of c-Myc protein abundance by a protein phosphatase 2A-glycogen synthase kinase 3-negative feedback pathway. Genes Cancer 3:23–36. https://doi.org/10.1177/1947601912448067

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Ye N, Ding Y, Wild C, Shen Q, Zhou J (2014) Small molecule inhibitors targeting activator protein 1 (AP-1). J Med Chem 57:6930–6948. https://doi.org/10.1021/jm5004733

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Eferl R, Wagner EF (2003) AP-1: a double-edged sword in tumorigenesis. Nat Rev Cancer 3:859–868. https://doi.org/10.1038/nrc1209

    Article  CAS  PubMed  Google Scholar 

  17. Huhe M, Liu S, Zhang Y, Zhang Z, Chen Z (2017) Expression levels of transcription factors c-Fos and c-Jun and transmembrane protein HAb18G/CD147 in urothelial carcinoma of the bladder. Mol Med Rep 15:2991–3000. https://doi.org/10.3892/mmr.2017.6411

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Lopes N, Faccin-Galhardi LC, Espada SF, Pacheco AC, Ricardo NMPS, Linhares REC, Nozawa C (2013) Sulfated polysaccharide of Caesalpinia ferrea inhibits herpes simplex virus and poliovirus. Int J Biol Macromol 60:93–99

    Article  CAS  PubMed  Google Scholar 

  19. Osman SM, Alazzouni AS, Abd El-Khalek SM, Koheil MA, EL-Haddad AE (2013) Phytoconstituents and biological activities of the aerial parts of Caesalpinia gilliesii growing in Egypt. Life Sci J 10:2418–2430

    Google Scholar 

  20. Osman SM, El-Khalik A, El-Haddad SM, Wink AE M (2016) A new steroidal compound (β-sitosterol-3-O-butyl) isolated from Caesalpinia gilliesii flowers. Int J Appl Res Nat Prod 8:14–19

    Google Scholar 

  21. Santander SP, Aoki M, Hernandez JF, Pombo M, Moins-Teisserenc H, Mooney N, Fiorentino S (2011) Galactomannan from Caesalpinia spinosa induces phenotypic and functional maturation of human dendritic cells. Int Immunopharmacol 11:652–660. https://doi.org/10.1016/j.intimp.2011.01.006

    Article  CAS  PubMed  Google Scholar 

  22. Joseph MM, Aravind SR, George SK, Varghese S, Sreelekha TT (2013) A galactomannan polysaccharide from Punica granatum imparts in vitro and in vivo anticancer activity. Carbohydr Polym 2013; 98:1466–1475. https://doi.org/10.1016/j.carbpol07.023

    Article  CAS  PubMed  Google Scholar 

  23. Thombre NA, Gide PS (2015) Determination of sugar composition of polysaccharides in Caesalpinia pulcherrima galactomannan solution using HPTLC. Turk J Pharm Sci 12(1):9–18

    CAS  Google Scholar 

  24. Elting J, Montgomery R (1979) Biological effects of cesalin, an anti-tumor protein, on cultured mammalian cells. J Biol Chem 254(2):453–458

    CAS  PubMed  Google Scholar 

  25. Matloub AA, El-Sherbini M, Borai IB, Magda K, Ezz Rizk MZ, Aly HF et al (2013) Assessment of anti-hyperlipidemic effect and physco-chemical characterization of water soluble polysaccharides of Ulva fasciata Delile. J Appl Sci Res 9(4):2983–2993

    CAS  Google Scholar 

  26. Mosmann T (1983) Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J Immunol Methods 65:55–63

    Article  CAS  PubMed  Google Scholar 

  27. Hassan SK, Mousa AM, Eshak MG, El ABD, Farrag RH, El ABD, Badawi FM (2014) Therapeutic and chemopreventive effects of nano curcumin against diethylnitrosamine induced hepatocellular carcinoma in rats. Inn Acad Sci. 6:54

    Google Scholar 

  28. Halle W (2003) The Registry of Cytotoxicity: toxicity testing in cell cultures to predict acute toxicity (LD50) and to reduce testing in animals. Altern Lab Anim 31(2):89–198

    Article  CAS  Google Scholar 

  29. Reitman S, Frankel S (1957) A colorimetric method for the determination of serum glutamic oxalacetic and glutamic pyruvic transaminases. Am J Clin Pathol 28:56–63

    Article  CAS  PubMed  Google Scholar 

  30. Ohkawa H, Ohishi N, Yagi K (1979) Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Anal Biochem 95:351–358

    Article  CAS  PubMed  Google Scholar 

  31. Miranda KM, Espey MG, Wink DA (2001) A rapid, simple spectrophotometric method for simultaneous detection of nitrate and nitrite. Nitric oxide Biol Chem 5:62–71. https://doi.org/10.1006/niox.2000.0319

    Article  CAS  Google Scholar 

  32. Moron MS, Depierre JW, Mannervik B (1979) Levels of glutathione, glutathione reductase and glutathione S-transferase activities in rat lung and liver. Biochim Biophys Acta 582:67–78

    Article  CAS  PubMed  Google Scholar 

  33. Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods 25:402–408. https://doi.org/10.1006/meth.1262

    Article  CAS  Google Scholar 

  34. Bancroft JD, Layton C, Suvarna SK (2013) Bancroft’s theory and practice of histological techniques. Elsevier, Amsterdam

    Google Scholar 

  35. Cerqueira MA, Pinheiro AC, Souza BWS, Lima AMP, Ribeiro C, Miranda C, Teixeira JA, Moreira RA, Coimbra MA, Goncalves MP, Vicente AA (2009) Extraction, purification and characterization of galactomannans from non-traditional sources. Carbohyd Polym 75:408–414

    Article  CAS  Google Scholar 

  36. Pawar HA, Lalitha KG (2014) Isolation, purification and characterization of galactomannansas an excipient from Senna tora seeds. Int J Biol Macromol 65:167–175

    Article  CAS  PubMed  Google Scholar 

  37. Wang J, Somasundaran P (2007) Study of galactomannose interaction with solids using AFM, IR and allied techniques. J Colloid Interface Sci 309:373–383

    Article  CAS  PubMed  Google Scholar 

  38. López- Franco YL, Cervantes-Montaño CI, Martínez-Robinson KG, Lizardi-Mendoza J, Robles-Ozuna LE (2013) Physicochemical characterization and functional properties of galactomannans from mesquite seeds (Prosopis spp.). Food Hydrocoll 30(2):656–660

    Article  CAS  Google Scholar 

  39. Cerqueira MA, Bourbon AI, Pinheiro AC, Martins JT, Souza BWS, Teixeira JA, Vicente AA (2011) Galactomannans use in the development of edible films/coatings for food applications. Trends Food Sci Technol 22:662–671

    Article  CAS  Google Scholar 

  40. Azero EG, Andrade CT (2006) Characterisation of Prosopis juliflora seed gum and the effect of its addition to k-carrageenan systems. J Braz Chem Soc 17:844–850

    Article  CAS  Google Scholar 

  41. Kwan YP et al (2016) Evaluation of the cytotoxicity, cell-cycle arrest, and apoptotic induction by Euphorbia hirta in MCF-7 breast cancer cells. Pharm Biol 54:1223–1236

    CAS  PubMed  Google Scholar 

  42. Liu L, Jia J, Zeng G, Zhao Y, Qi X, He C, Guo W, Fan D, Han G, Li Z (2013) Studies on immunoregulatory and anti-tumor activities of a polysaccharide from Salvia miltiorrhiza Bunge. Carbohydr Polym 92:479–483. https://doi.org/10.1016/j.carbpol.2012.09.061

    Article  CAS  PubMed  Google Scholar 

  43. Wang F-S, Fan J-G, Zhang Z, Gao B, Wang H-Y (2014) The global burden of liver disease: the major impact of China. Hepatology 60:2099–2108. https://doi.org/10.1002/hep.27406

    Article  PubMed  PubMed Central  Google Scholar 

  44. Wong RS (2011) Apoptosis in cancer: from pathogenesis to treatment. J Exp Clin Cancer Res 30:87

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Kumada T, Toyoda H, Kiriyama S, Sone Y, Tanikawa M, Hisanaga Y, Kanamori A, Atsumi H, Takagi M, Arakawa T, Fujimori M (2010) Incidence of hepatocellular carcinoma in patients with chronic hepatitis B virus infection who have normal alanine aminotransferase values. J Med Virol 82:539–545. https://doi.org/10.1002/jmv.21686

    Article  CAS  PubMed  Google Scholar 

  46. Mena S, Ortega A, Estrela JM (2009) Oxidative stress in environmental-induced carcinogenesis. Mutat Res 674:36–44. https://doi.org/10.1016/j.mrgentox.2008.09.017

    Article  CAS  PubMed  Google Scholar 

  47. Li T, Zhao X, Wang L, Gao S, Zhao J, Fan Y, Wang K (2013) Glutathione S-transferase P1 correlated with oxidative stress in hepatocellular carcinoma. Int J Med Sci https://doi.org/10.7150/ijms.5947

    Article  PubMed  PubMed Central  Google Scholar 

  48. Cheng S, Lin P, Liu H, Peng Y, Huang S, Huang Y (2016) Vitamin B-6 supplementation could mediate antioxidant capacity by reducing plasma homocysteine concentration in patients with hepatocellular carcinoma after tumor resection. BioMed Res Int https://doi.org/10.1155/2016/7658981

    Article  PubMed  PubMed Central  Google Scholar 

  49. Tracey KJ, Cerami A (1993) Tumor necrosis factor, other cytokines and disease. Annu Rev Cell Biol 9:317–343. https://doi.org/10.1146/annurev.cb.09.110193.001533

    Article  CAS  PubMed  Google Scholar 

  50. Degterev A, Zhou W, Maki JL, Yuan J (2014) Assays for necroptosis and activity of RIP kinases. Methods Enzymol 545:1–33

    Article  CAS  PubMed  Google Scholar 

  51. Zhang JY, Tao S, Kimmel R, Khavari PA (2005) CDK4 regulation by TNFR1 and JNK is required for NF-kappaB-mediated epidermal growth control. J Cell Biol 168:561–566. https://doi.org/10.1083/jcb.200411060

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Jayasooriya RGPT, Moon D-O, Park SR, Choi YH, Asami Y, Kim M-O, Jang J-H, Kim BY, Ahn JS, Kim G-Y (2013) Combined treatment with verrucarin A and tumor necrosis factor-alpha sensitizes apoptosis by overexpression of nuclear factor-kappaB-mediated Fas. Environ Toxicol Pharmacol 36:303–310. https://doi.org/10.1016/j.etap.2013.04.008

    Article  CAS  PubMed  Google Scholar 

  53. Muhammad N, Bhattacharya S, Steele R, Phillips N, Ray RB (2016) Involvement of c-Fos in the promotion of cvancer stem-like cell properties in head and neck squamous cell carcinoma. Clin Cancer Res https://doi.org/10.1158/1078-0432.CCR-16-2811

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors are grateful to the STDF and the National Research Centre for their support to complete this research.

Funding

This research was financially supported by Science and Technology Development Fund in Egypt (STDF) Project (No: 5510) and the National Research Centre in-house project number 110100314.

Author information

Authors and Affiliations

Authors

Contributions

RMAM participated in the experimental part for animal model, writing the manuscript and submission. ARH participated in the in vitro experimental part in addition to writing (AAM conducted the isolation and characterization of GMann as well as contribution in writing the manuscript.) MOK participated in experimental part for animal model and Writing. AZA suggested the point and was the Principal Investigator of the funding projects. All authors revised the manuscript.

Corresponding author

Correspondence to Rehab M. Abdel-Megeed.

Ethics declarations

Conflict of interest

The authors have no conflicts of interest to declare.

Ethics approval

All procedures relating to animal care and treatments strictly adhered to the ethical procedures and policies approved by Animal Care and Use Committee of National Research Center and complied with the Guide for Care and Use of Laboratory published by the US National Institute of Health.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abdel-Megeed, R.M., Hamed, A.R., Matloub, A.A. et al. Regulation of apoptotic and inflammatory signaling pathways in hepatocellular carcinoma via Caesalpinia gilliesii galactomannan. Mol Cell Biochem 451, 173–184 (2019). https://doi.org/10.1007/s11010-018-3404-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-018-3404-y

Keywords

Navigation