Skip to main content
Log in

De-regulation of the RBBP6 isoform 3/DWNN in human cancers

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

Retinoblastoma binding protein 6 (RBBP6) is a nuclear protein, previously implicated in the regulation of cell cycle and apoptosis. The human RBBP6 gene codes for three protein isoforms and isoform 3 consists of the domain with no name domain only whilst the other two isoforms, 1 and 2 comprise of additional zinc, RING, retinoblastoma and p53 binding domains. In this study, the localization of RBBP6 using RBBP6 variant 3 mRNA-specific probe was performed to investigate the expression levels of the gene in different tumours and find a link between RBBP6 and human carcinogenesis. Using FISH, real-time PCR and Western blotting analysis our results show that RBBP6 isoform 3 is down-regulated in human cancers. RBBP6 isoform 3 knock-down resulted in reduced G2/M cell cycle arrest whilst its over-expression resulted in increased G2/M cell cycle arrest using propidium iodide DNA staining. The results further demonstrate that the RBBP6 isoform 3 may be the cell cycle regulator and involved in mitotic apoptosis not the isoform 1 as previously reported for mice. In conclusion, these findings suggest that RBBP6 isoform 3 is a cell cycle regulator and may be de-regulated in carcinogenesis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Sakai Y, Saijom M, Coelho K, Kishino T, Niikawa N, Taya Y (1995) cDNA sequence and chromosomal localization of a novel human protein, RBQ-1 (RBBP6), that binds to the retinoblastoma gene product. Genomics 30:98–101

    Article  PubMed  CAS  Google Scholar 

  2. Gao S, Scott R (2002) P2P-R protein overexpression restricts mitotic progression at prometaphase and promotes mitotic apoptosis. J Cell Physiol 193:199–207

    Article  PubMed  CAS  Google Scholar 

  3. Gao S, Witte M, Scott R (2002) P2P-R protein localizes to the nucleolus of interphase cells and the periphery of chromosomes in mitotic cells which show maximum P2P-R immunoreactivity. J Cell Physiol 191:145–154

    Article  PubMed  CAS  Google Scholar 

  4. Witte M, Scott R (1997) The proliferation potential protein-related (P2P-R) gene with domains encoding heterogeneous nuclear ribonucleoprotein association and Rb1 binding shows repressed expression during terminal differentiation. Proc Natl Acad Sci USA 94:1212–1217

    Article  PubMed  CAS  Google Scholar 

  5. Simons A, Melamed-Bessudo C, Wolkowicz R, Sperling J, Sperling R, Eisenbach L, Rotter V (1997) PACT: cloning and characterization of a cellular p53 binding protein that interacts with Rb. Oncogene 14:145–155

    Article  PubMed  CAS  Google Scholar 

  6. Pugh D, Ab E, Faro A, Lutya PT, Hoffmann E, Rees DJ (2006) DWNN, a novel ubiquitin-like domain, implicates RBBP 6 in mRNA processing and ubiquitin-like pathways. BMC Struct Biol 6:1

    Article  PubMed  Google Scholar 

  7. George A (1995) A new method for isolating genes involved in the processing and presentation of antigens to cytotoxic T cells. D Phil Thesis, University of Oxford

  8. Pretorius A (2007) Functional analysis of the mouse RBBP6 gene using interference RNA. PhD Thesis, University of the Western Cape

  9. Gao S, Scott R (2003) Stable overexpression of specific segments of the P2P-R protein in human MCF-7 cells promotes camptothecin-induced apoptosis. J Cell Physiol 197:445–452

    Article  PubMed  CAS  Google Scholar 

  10. Chibi M, Meyer M, Skepu A, Rees DJG, Moolman-Smoock JC, Pugh DJ (2008) RBBP6 interacts with multifunctional protein YB-1 through its RING finger domain, leading to ubiquitination and proteosomal degradation of YB-1. J Mol Biol 384:908–916

    Article  PubMed  CAS  Google Scholar 

  11. Bellstedt D, Human P, Rowland GF, Van der Merve KJ (1987) Acid-treated, naked bacteria as immune carriers for protein antigens. J Immunol Methods 98:249–255

    Article  PubMed  CAS  Google Scholar 

  12. Meyer M, Essack M, Kanyanda S, Rees J (2008) A low-cost flow cytometric assay for the detection and quantification of apoptosis using an anionic halogenated fluorescein dye. Biotechniques 45:317–320

    Article  PubMed  CAS  Google Scholar 

  13. Yoshitake Y, Nakatsura T, Monji M, Senju S, Matsuyoshi H, Tsukamoto H, Hosaka S, Komori H, Fukuma D, Ikuta Y, Katagiri T, Furukawa Y, Ito H, Shinohara M, Nakamura Y, Nishimura Y (2004) Proliferation potential-related protein, an ideal oesophageal cancer antigen for immunotherapy, identified using complementary DNA microarray analysis. Clin Cancer Res 10:6437–6448

    Article  PubMed  CAS  Google Scholar 

  14. Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and \( 2^{- \Updelta \Updelta {C_{{\text{T}}}}} \) method. Methods 25:402–408

  15. Yu Y, Yip G, Tan P, Thike AA, Matsumoto K, Tsujimoto M, Bay BH (2010) Y-box binding protein 1 is up-regulated in proliferative breast cancer and its inhibition deregulates the cell cycle. Int J Oncol 37:483–492

    PubMed  CAS  Google Scholar 

  16. Basaki Y, Taguchi K, Izumi H, Murakami Y, Kubo T, Hosoi F, Watari K, Nakano K, Kawaguchi H, Ohno S, Kohno K, Ono M, Kuwano M (2010) Y-box binding protein-1 (YB-1) promotes cell cycle progression through CDC6-dependent pathway in human cancer cells. Eur J Cancer 46:954–965

    Article  PubMed  CAS  Google Scholar 

  17. Takahashi M, Shimajiri S, Izumi H, Hirano G, Kashiwagi E, Yasuniwa Y, Wu Y, Han B, Akiyama M, Nishizawa S, Sasaguri Y, Kohno K (2010) Y-box binding protein-1 is a novel molecular target for tumour vessels. Cancer Sci 101:1367–1373

    Article  PubMed  CAS  Google Scholar 

  18. Mather A, Rakgotho M, Ntwasa M (2005) SNAMA, a novel protein with a DWNN domain and a RING finger-like motif: a possible role in apoptosis. Biochim Biophys Acta 1727:169–176

    PubMed  CAS  Google Scholar 

  19. Peidis P, Giannakouros T, Burow M, Williams RW, Scott RE (2010) Systems genetics analyses predict a transcription role for P2P-R: molecular confirmation that P2P-R is a transcriptional co-repressor. BMC Syst Biol 4:14

    Article  PubMed  Google Scholar 

  20. Tai H, Kubota N, Kato S (2000) Involvement of nuclear receptor coactivator SRC-1 in estrogen-dependent cell growth of MCF-7 cells. Biochem Biophys Res Commun 267:311–316

    Article  PubMed  CAS  Google Scholar 

  21. Ku T, Crowe D (2007) Coactivator-mediated estrogen response in human squamous cell carcinoma lines. J Endocrinol 193:147–155

    Article  PubMed  CAS  Google Scholar 

  22. Hudelist G, Czerwenka K, Kubista E, Marton E, Pischinger K, Singer CF (2003) Expression of sex steroid receptors and their co-factors in normal and malignant breast tissue: AIB1 is a carcinoma-specific co-activator. Breast Cancer Res Treat 78:193–204

    Article  PubMed  CAS  Google Scholar 

  23. Ramaswamy B, Majumolers S, Roy S, Ghoshal K, Kutay H, Datta J, Younes M, Shapiro CL, Motiwala T, Jacob ST (2009) Estrogen-mediated suppression of the gene encoding protein tyrosine phosphatase PTPRO in human breast cancer: mechanism and role in tamoxifen sensitivity. Mol Endocrinol 23:176–187

    Article  PubMed  CAS  Google Scholar 

  24. Mbita Z (2004) Molecular analysis of a novel death-related gene, domain with no name (DWNN), in human parenchymal diseases. MSc Thesis, University of the Witwatersrand

  25. Kirkin V, Dikic I (2007) Role of ubiquitin- and Ubl-binding proteins in cell signalling. Curr Opin Cell Biol 19:199–205

    Article  PubMed  CAS  Google Scholar 

  26. Liao S, Wang T, Fan K, Tu X (2010) The small ubiquitin-like modifier (SUMO) is essential in cell cycle regulation in Trypanosoma brucei. Exp Cell Res 316:704–715

    Article  PubMed  CAS  Google Scholar 

  27. Piñol-Roma S, Dreyfuss G (1993) hnRNP proteins: localization and transport between the nucleus and the cytoplasm. Trends Cell Biol 3:151–155

    Article  PubMed  Google Scholar 

  28. Vo L, Minet M, Schmitter JM, Lacroute F, Wyers F (2001) Mpe1, a zinc knuckle protein, is an essential component of yeast cleavage and polyadenylation factor required for the cleavage and polyadenylation of mRNA. Mol Cell Biol 21:8346–8356

    Article  PubMed  CAS  Google Scholar 

  29. Li L, Deng L, Xing G, Teng Y, Tian C, Cheng X, Yin X, Yang J, Gao X, Zhu Y, Sun Q, Zhang L, Yang X, He F (2007) PACT is a negative regulator of p53 and essential for cell growth and embryonic development. Proc Natl Acad Sci USA 104:7951–7956

    Article  PubMed  CAS  Google Scholar 

  30. Scott R, Giannakouros T, Gao S, Peidis P (2003) Functional potential of P2P-R: a role in the cell cycle and cell differentiation related to its interactions with proteins that bind to matrix associated regions of DNA? J Cell Biochem 90:6–12

    Article  PubMed  CAS  Google Scholar 

  31. Scott R, Gao S (2002) P2P-R deficiency modifies nocodazole-induced mitotic arrest and UV-induced apoptosis. Anticancer Res 22:3837–3842

    PubMed  CAS  Google Scholar 

  32. Motadi LR, Bhoola KD, Dlamini Z (2011) Expression and function of retinoblastoma binding protein 6 (RBBP6) in human lung cancer. Immunology 216:1065–1073

    CAS  Google Scholar 

Download references

Acknowledgments

We are grateful to the National Research Foundation (South Africa), the Council for Scientific and Industrial Research (CSIR) and the University of the Witwatersrand for funding.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zodwa Dlamini.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mbita, Z., Meyer, M., Skepu, A. et al. De-regulation of the RBBP6 isoform 3/DWNN in human cancers. Mol Cell Biochem 362, 249–262 (2012). https://doi.org/10.1007/s11010-011-1150-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-011-1150-5

Keywords

Navigation