Skip to main content
Log in

RIOK3 interacts with caspase-10 and negatively regulates the NF-κB signaling pathway

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

RIOK3 was initially characterized as a homolog of Aspergillus nidulans sudD and showed down-regulation at the invasive front of malignant melanomas, but the molecular mechanism remains elusive. Here, we report that overexpression of RIOK3 inhibits TNFα-induced NF-κB activation, but down-regulation of endogenous RIOK3 expression by siRNA potentiates it. A yeast two-hybrid experiment revealed that RIOK3 interacted with caspase-10, and further, a GST pull-down assay and endogenous coimmunoprecipitation validated the interaction. We subsequently showed that the interaction was mediated by the RIO domain of RIOK3 and each death effector domain of caspase-10. Interestingly, our data demonstrated that RIOK3 suppressed caspase-10-mediated NF-κB activation by competing RIP1 and NIK to bind to caspase-10. Importantly, the kinase activity of RIOK3 was confirmed to be relevant to NF-κB signaling. Taken together, our findings strongly suggest that RIOK3 negatively regulates NF-κB signaling pathway activated by TNFα dependent on its kinase activity and NF-κB signaling pathway activated by caspase-10 independent of its kinase activity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Angermayr M, Bandlow W (1997) The type of basal promoter determines the regulated or constitutive mode of transcription in the common control region of the yeast gene pair GCY1/RIO1. J Biol Chem 271:31630–31635

    Article  Google Scholar 

  2. Geerlings TH, Faber AW, Bister MD, Vos JC, Raue HA (2003) RIO2p, an evolutionarily conserved, low abundant protein kinase essential for processing of 20S pre-rRNA in Saccharomyces cerevisiae. J Biol Chem 278:22537–22545

    Article  PubMed  CAS  Google Scholar 

  3. Anaya P, Evans SC, Dai C, Lozano G, May GS (1998) Isolation of the Aspergillus nidulans sudD gene and its human homologue. Gene 211:323–329

    Article  PubMed  CAS  Google Scholar 

  4. Angermayr M, Roidl A, Bandlow W (2002) Yeast RIO1p is the founding member of a novel subfamily of protein serine kinases involved in the control of cell cycle progression. Mol Microbiol 44:309–324

    Article  PubMed  CAS  Google Scholar 

  5. Vanrobays E, Gleizes PE, Bousquet-Antonelli C, Noaillac-Depeyre J, Caizergues-Ferrer M, Gelugne JP (2001) Processing of 20S pre-rRNA to 18S ribosomal RNA in yeast requires Rrp10p, an essential non-ribosomal cytoplasmic protein. EMBO J 20:4204–4213

    Article  PubMed  CAS  Google Scholar 

  6. Roesch A, Vogt T, Stolz W, Dugas M, Landthaler M, Becker B (2003) Discrimination between gene expression patterns in the invasive margin and the tumour core of malignant melanomas. Melanoma Res 13:503–509

    Article  PubMed  CAS  Google Scholar 

  7. Huang S, Pettaway CA, Uehara H, Bucana CD, Fidler IJ (2001) Blockade of NF-κB activity in human prostate cancer cells is associated with suppression of angiogenesis, invasion, and metastasis. Oncogene 20:4188–4197

    Article  PubMed  CAS  Google Scholar 

  8. Huang S, DeGuzman A, Bucana CD, Fidler IJ (2000) Nuclear factor-κB activity correlates with growth, angiogenesis, and metastasis of human melanoma cells in nude mice. Clin Cancer Res 6:2573–2581

    PubMed  CAS  Google Scholar 

  9. Huber MA, Azoitei N, Baumann B, Grünert S, Sommer A, Pehamberger H, Kraut N, Beug H, Wirth T (2004) NF-κB is essential for epithelial-mesenchymal transition and metastasis in a model of breast cancer progression. J Clin Invest 114:569–581

    PubMed  CAS  Google Scholar 

  10. Andela VB, Schwarz EM, Puzas JE, O’Keefe RJ, Rosier RN (2000) Tumor metastasis and the reciprocal regulation of prometastatic and antimetastatic factors by nuclear factor kappa B. Cancer Res 60:6557–6562

    PubMed  CAS  Google Scholar 

  11. Li Q, Verma IM (2002) NF-kappaB regulation in the immune system. Nat Rev Immunol 2:725–734

    Article  PubMed  CAS  Google Scholar 

  12. Pikarsky E, Porat RM, Stein I, Abramovitch R, Amit S, Kasem S, Pyest EG, Shoval SU, Galun E, Neriah YB (2004) NF-kappaB functions as a tumour promoter in inflammation-associated cancer. Nature 431:461–466

    Article  PubMed  CAS  Google Scholar 

  13. Hayden MS, Ghosh S (2004) Signaling to NF-κB. Genes Dev 18:2195–2224

    Article  PubMed  CAS  Google Scholar 

  14. Li L, Shi Y, Wu H, Wan B, Li P, Zhou L, Shi H, Huo K (2007) Hepatocellular carcinoma-associated gene 2 interacts with MAD2L2. Mol Cell Biochem 304:297–304

    Article  PubMed  CAS  Google Scholar 

  15. Ma Q, Zhou L, Shi H, Huo K (2008) NUMBL interacts with TAB 2 and inhibits TNFα and IL-1β-induced NF-κB activation. Cell Signal 20:1044–1051

    Article  PubMed  CAS  Google Scholar 

  16. McCarthy JV, Ni J, Dixit VM (1998) RIP2 is a novel NF-kappaB-activating and cell death-inducing kinase. J Biol Chem 273:16968–16975

    Article  PubMed  CAS  Google Scholar 

  17. Schmitz ML, Bacher S, Kracht M (2001) I kappa B-independent control of NF-kappa B activity by modulatory phosphorylations. Trends Biochem Sci 26:186–190

    Article  PubMed  CAS  Google Scholar 

  18. Shikama Y, Yamada M, Miyashita T (2003) Caspase-8 and caspase-10 activate NF-kappaB through RIP, NIK and IKKalpha kinases. Eur J Immunol 33:1998–2006

    Article  PubMed  CAS  Google Scholar 

  19. Wang H, Wang P, Sun X, Luo Y, Wang X, Ma D, Wu J (2007) Cloning and characterization of a novel caspase-10 isoform that activates NF-κB activity. Biochem Biophys Acta 1770:1528–1537

    PubMed  CAS  Google Scholar 

  20. Hanks SK, Lindberg RA (1991) Use of degenerate oligonucleotide probes to identify clones that encode protein kinases. Methods Enzymol 200:525–532

    Article  PubMed  CAS  Google Scholar 

  21. Stephens P, Edkins S, Davies H et al (2005) A screen of the complete protein kinase gene family identifies diverse patterns of somatic mutations in human breast cancer. Nat Genet 37:590–592

    Article  PubMed  CAS  Google Scholar 

  22. Payne AS, Cornelius LA (2002) The role of chemokines in melanoma tumor growth and metastasis. J Invest Dermatol 118:915–922

    Article  PubMed  CAS  Google Scholar 

  23. Schaider H, Oka M, Bogenrieder T, Nesbit M, Satyamoorthy K, Berking C, Matsushima K, Herlyn M (2003) Differential response of primary and metastatic melanomas to neutrophils attracted by IL-8. Int J Cancer 103:335–343

    Article  PubMed  CAS  Google Scholar 

  24. Leslie MC, Bar-Eli M (2005) Regulation of gene expression in melanoma: new approaches for treatment. J Cell Biochem 94:25–38

    Article  PubMed  CAS  Google Scholar 

  25. Daniotti M, Oggionni M, Ranzani T et al (2004) BRAF alterations are associated with complex mutational profiles in malignant melanoma. Oncogene 23:5968–5977

    Article  PubMed  CAS  Google Scholar 

  26. Chaudhary PM, Eby MT, Jasmin A, Kumar L, Liu L, Hood L (2000) Activation of the NF-kappaB pathway by caspase 8 and its homologs. Oncogene 19:4451–4460

    Article  PubMed  CAS  Google Scholar 

  27. Bodmer JL, Holler N, Reynard S, Vinciguerra P, Schneider P, Juo P, Blenis J, Tschopp J (2000) TRAIL receptor-2 signals apoptosis through FADD and caspase-8. Nat Cell Biol 2:241–243

    Article  PubMed  CAS  Google Scholar 

  28. Jun JI, Chung CW, Lee HJ et al (2005) Role of FLASH in caspase-8-mediated activation of NF-kappaB: dominant-negative function of FLASH mutant in NF-kappaB signaling pathway. Oncogene 24:688–696

    Article  PubMed  CAS  Google Scholar 

  29. Ghosh S, Karin M (2002) Missing pieces in the NF-κB puzzle. Cell 109(Suppl):S81–S96

    Article  PubMed  CAS  Google Scholar 

  30. Jones SA, Butler RN, Sanderson IR, Wilson JW (2004) The effect of specific caspase inhibitors on TNF-alpha and butyrate-induced apoptosis of intestinal epithelial cells. Exp Cell Res 292:29–39

    Article  PubMed  CAS  Google Scholar 

  31. Goepel F, Weinmann P, Schymeinsky J, Walzog B (2004) Identification of caspase-10 in human neutrophils and its role in spontaneous apoptosis. J Leukoc Biol 75:836–843

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank Dr. Karen Dawson for proofreading the manuscript. This study was supported by the Chinese 863 program (2006AA02A310) and Chinese Human Liver Proteome Project (2004BA711A19) to K. Huo.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Keke Huo.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 28 kb)

Supplementary Fig.1

Interaction between RIOK3 and caspase-10 in yeast two-hybrid system. Plasmids were cotransformed into yeast Y190 cells and plated on an SD/-Leu-Trp plate (upper) or an SD/-Leu-Trp-His plate with 30 mM 3-AT (middle). Blue colour due to expression of β-gal protein is indication of positive protein–protein interaction (bottom). I, pGBKT7-RIOK3+pGADT7 II, pGBKT7-RIOK3+pACT2-caspase-10 III, pGBKT7+pACT2-caspase-10. Supplementary material 2 (TIFF 3474 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shan, J., Wang, P., Zhou, J. et al. RIOK3 interacts with caspase-10 and negatively regulates the NF-κB signaling pathway. Mol Cell Biochem 332, 113–120 (2009). https://doi.org/10.1007/s11010-009-0180-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-009-0180-8

Keywords

Navigation