Skip to main content
Log in

C-reactive protein augments hypoxia-induced apoptosis through mitochondrion-dependent pathway in cardiac myocytes

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

C-reactive protein (CRP) is an important predictive factor for cardiac disorders including acute myocardial infarction. Therapeutic inhibition of CRP has been shown to be a promising new approach to cardioprotection in acute myocardial infarction in rat models, but the direct effects of CRP on cardiac myocytes are poorly defined. In this study, we investigated the effects of CRP on cardiac myocytes and its molecular mechanism involved. Neonatal rat cardiac myocytes were exposed to hypoxia for 8 h. Hypoxia induced myocyte apoptosis under serum-deprived conditions, which was accompanied by cytochrome c release from mitochondria into cytosol, as well as activation of Caspase-9, Caspase-3. Hypoxia also increased Bax and decreased Bcl-2 mRNA and protein expression, thereby significantly increasing Bax/Bcl-2 ratio. Cotreatment of CRP (100 μg/ml) under hypoxia significantly increased the percentage of apoptotic myocytes, translocation of cytochrome c, Bax/Bcl-2 ratio, and the activity of Caspase-9 and Caspase-3. However, no effects were observed on myocyte apoptosis when cotreatment of CRP under normoxia. Furthermore, Bcl-2 overexpression significantly improved cellular viability through inhibition of hypoxia or cotreatment with CRP induced Bax/Bcl-2 ratio changes and cytochrome c release from mitochondria to cytosol, and significantly blocked the activity of Caspase-9 and Caspase-3. The present study demonstrates that CRP could enhance apoptosis in hypoxia-stimulated myocytes through the mitochondrion-dependent pathway but CRP alone has no effects on neonatal rat cardiac myocytes under normoxia. Bcl-2 overexpression might prevent CRP-induced apoptosis by inhibiting cytochrome c release from the mitochondria and block activation of Caspase-9 and Caspase-3.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Volanakis JE (2001) Human C-reactive protein: expression, structure, and function. Mol Immunol 38:189–197

    Article  PubMed  CAS  Google Scholar 

  2. Albert CM, Ma J, Rifai N, Stampfer MJ et al (2002) Prospective study of C-reactive protein, homocysteine, and plasma lipid levels as predictors of sudden cardiac death. Circulation 105:2595–2599

    Article  PubMed  CAS  Google Scholar 

  3. Koenig W, Sund M, Frohlich M et al (1999) C-Reactive protein, a sensitive marker of inflammation, predicts future risk of coronary heart disease in initially healthy middle-aged men: results from the MONICA (Monitoring Trends and Determinants in Cardiovascular Disease) Augsburg Cohort Study, 1984 to 1992. Circulation 99:237–242

    PubMed  CAS  Google Scholar 

  4. Ridker PM, Cushman M, Stampfer MJ et al (1997) Inflammation, aspirin, and the risk of cardiovascular disease in apparently healthy men. N Engl J Med 336:973–979

    Article  PubMed  CAS  Google Scholar 

  5. Ridker PM, Hennekens CH, Buring JE et al (2000) C-reactive protein and other markers of inflammation in the prediction of cardiovascular disease in women. N Engl J Med 342:836–843

    Article  PubMed  CAS  Google Scholar 

  6. Ridker PM, Stampfer MJ, Rifai N (2001) Novel risk factors for systemic atherosclerosis: a comparison of C-reactive protein, fibrinogen, homocysteine, lipoprotein(a), and standard cholesterol screening as predictors of peripheral arterial disease. JAMA 285:2481–2485

    Article  PubMed  CAS  Google Scholar 

  7. Wang J, Zhang S, Jin Y, Qin G et al (2007) Elevated levels of platelet-monocyte aggregates and related circulating biomarkers in patients with acute coronary syndrome. Int J Cardiol 115:361–365

    Article  PubMed  Google Scholar 

  8. Li L, Roumeliotis N, Sawamura T et al (2004) C-reactive protein enhances LOX-1 expression in human aortic endothelial cells: relevance of LOX-1 to C-reactive protein-induced endothelial dysfunction. Circ Res 95:877–883

    Article  PubMed  CAS  Google Scholar 

  9. Suh W, Kim KL, Choi JH et al (2004) C-reactive protein impairs angiogenic functions and decreases the secretion of arteriogenic chemo-cytokines in human endothelial progenitor cells. Biochem Biophys Res Commun 321:65–71

    Article  PubMed  CAS  Google Scholar 

  10. Verma S, Wang CH, Li SH et al (2002) A self-fulfilling prophecy: C-reactive protein attenuates nitric oxide production and inhibits angiogenesis. Circulation 106:913–919

    Article  PubMed  CAS  Google Scholar 

  11. Verma S, Kuliszewski MA, Li SH et al (2004) C-reactive protein attenuates endothelial progenitor cell survival, differentiation, and function: further evidence of a mechanistic link between C-reactive protein and cardiovascular disease. Circulation 109:2058–2067

    Article  PubMed  CAS  Google Scholar 

  12. Venugopal SK, Devaraj S, Yuhanna I et al (2002) Demonstration that C-reactive protein decreases eNOS expression and bioactivity in human aortic endothelial cells. Circulation 106:1439–1441

    Article  PubMed  CAS  Google Scholar 

  13. Devaraj S, Kumaresan PR, Jialal I (2004) Effect of C-reactive protein on chemokine expression in human aortic endothelial cells. J Mol Cell Cardiol 36:405–410

    Article  PubMed  CAS  Google Scholar 

  14. Devaraj S, Xu DY, Jialal I (2003) C-reactive protein increases plasminogen activator inhibitor-1 expression and activity in human aortic endothelial cells: implications for the metabolic syndrome and atherothrombosis. Circulation 107:398–404

    Article  PubMed  CAS  Google Scholar 

  15. Wang Q, Zhu X, Xu Q et al (2005) Effect of C-reactive protein on gene expression in vascular endothelial cells. Am J Physiol Heart Circ Physiol 288:H1539–H1545

    Article  PubMed  CAS  Google Scholar 

  16. Pepys MB, Hirschfield GM, Tennent GA et al (2006) Targeting C-reactive protein for the treatment of cardiovascular disease. Nature 440:1217–1221

    Article  PubMed  CAS  Google Scholar 

  17. Gershov D, Kim S, Brot N et al (2000) C-Reactive protein binds to apoptotic cells, protects the cells from assembly of the terminal complement components, and sustains an antiinflammatory innate immune response: implications for systemic autoimmunity. J Exp Med 192:1353–1364

    Article  PubMed  CAS  Google Scholar 

  18. Griselli M, Herbert J, Hutchinson WL et al (1999) C-reactive protein and complement are important mediators of tissue damage in acute myocardial infarction. J Exp Med 190:1733–1740

    Article  PubMed  CAS  Google Scholar 

  19. Kang PM, Haunstetter A, Aoki H et al (2000) Morphological and molecular characterization of adult cardiomyocyte apoptosis during hypoxia and reoxygenation. Circ Res 87:118–125

    PubMed  CAS  Google Scholar 

  20. Crow MT, Mani K, Nam YJ et al (2004) The mitochondrial death pathway and cardiac myocyte apoptosis. Circ Res 95:957–970

    Article  PubMed  CAS  Google Scholar 

  21. Misao J, Hayakawa Y, Ohno M et al (1996) Expression of bcl-2 protein, an inhibitor of apoptosis, and Bax, an accelerator of apoptosis, in ventricular myocytes of human hearts with myocardial infarction. Circulation 94:1506–1512

    PubMed  CAS  Google Scholar 

  22. Chen Z, Chua CC, Ho YS et al (2001) Overexpression of Bcl-2 attenuates apoptosis and protects against myocardial I/R injury in transgenic mice. Am J Physiol Heart Circ Physiol 280:H2313–H2320

    PubMed  CAS  Google Scholar 

  23. World Medical Association Declaration of Helsinki (1997) Recommendations guiding physicians in biomedical research involving human subjects. Cardiovasc Res 35:2–3

    Article  Google Scholar 

  24. Dong W, Jin GH, Li SF et al (2006) Cross-linked polyethylenimine as potential DNA vector for gene delivery with high efficiency and low cytotoxicity. Acta Biochim Biophys Sin (Shanghai) 38:780–787

    Article  CAS  Google Scholar 

  25. Li S, Dong W, Zong Y et al (2007) Polyethylenimine-complexed plasmid particles targeting focal adhesion kinase function as melanoma tumor therapeutics. Mol Ther 15:515–523

    Article  PubMed  CAS  Google Scholar 

  26. Matoba S, Tatsumi T, Keira N et al (1999) Cardioprotective effect of angiotensin-converting enzyme inhibition against hypoxia/reoxygenation injury in cultured rat cardiac myocytes. Circulation 99:817–822

    PubMed  CAS  Google Scholar 

  27. de Beer FC, Hind CR, Fox KM et al (1982) Measurement of serum C-reactive protein concentration in myocardial ischaemia and infarction. Br Heart J 47:239–243

    Article  PubMed  Google Scholar 

  28. Lagrand WK, Niessen HW, Wolbink GJ et al (1997) C-reactive protein colocalizes with complement in human hearts during acute myocardial infarction. Circulation 95:97–103

    PubMed  CAS  Google Scholar 

  29. Gill R, Kemp JA, Sabin C, Pepys MB (2004) Human C-reactive protein increases cerebral infarct size after middle cerebral artery occlusion in adult rats. J Cereb Blood Flow Metab 24:1214–1218

    Article  PubMed  CAS  Google Scholar 

  30. Chaudhuri A, Janicke D, Wilson MF, Tripathy D et al (2004) Anti-inflammatory and profibrinolytic effect of insulin in acute ST-segment-elevation myocardial infarction. Circulation 109:849–854

    Article  PubMed  CAS  Google Scholar 

  31. Visser L, Zuurbier CJ, Hoek FJ, Opmeer BC et al (2005) Glucose, insulin and potassium applied as perioperative hyperinsulinaemic normoglycaemic clamp: effects on inflammatory response during coronary artery surgery. Br J Anaesth 95:448–457

    Article  PubMed  CAS  Google Scholar 

  32. Yaoita H, Ogawa K, Maehara K et al (1998) Attenuation of ischemia/reperfusion injury in rats by a caspase inhibitor. Circulation 97:276–281

    PubMed  CAS  Google Scholar 

  33. Holly TA, Drincic A, Byun Y et al (1999) Caspase inhibition reduces myocyte cell death induced by myocardial ischemia and reperfusion in vivo. J Mol Cell Cardiol 31:1709–1715

    Article  PubMed  CAS  Google Scholar 

  34. Liu C, Wang S, Deb A et al (2005) Proapoptotic, antimigratory, antiproliferative, and antiangiogenic effects of commercial C-reactive protein on various human endothelial cell types in vitro: implications of contaminating presence of sodium azide in commercial preparation. Circ Res 97:135–143

    Article  PubMed  CAS  Google Scholar 

  35. Danesh J, Wheeler JG, Hirschfield GM, Eda S et al (2004) C-reactive protein and other circulating markers of inflammation in the prediction of coronary heart disease. N Engl J Med 350:1387–1397

    Article  PubMed  CAS  Google Scholar 

  36. Malik S, Wong ND, Franklin S, Pio J et al (2005) Cardiovascular disease in U.S. patients with metabolic syndrome, diabetes, and elevated C-reactive protein. Diabetes Care 28:690–693

    Article  PubMed  CAS  Google Scholar 

  37. Gabay C, Kushner I (1999) Acute-phase proteins and other systemic responses to inflammation. N Engl J Med 340:448–454

    Article  PubMed  CAS  Google Scholar 

  38. Calabro P, Willerson JT, Yeh ET (2003) Inflammatory cytokines stimulated C-reactive protein production by human coronary artery smooth muscle cells. Circulation 108:1930–1932

    Article  PubMed  CAS  Google Scholar 

  39. Haider DG, Leuchten N, Schaller G et al (2006) C-reactive protein is expressed and secreted by peripheral blood mononuclear cells. Clin Exp Immunol 146:533–539

    Article  PubMed  CAS  Google Scholar 

  40. Blaschke F, Bruemmer D, Yin F et al (2004) C-reactive protein induces apoptosis in human coronary vascular smooth muscle cells. Circulation 110:579–587

    Article  PubMed  CAS  Google Scholar 

  41. Ikeda U, Maeda Y, Yamamoto K et al (2002) C-Reactive protein augments inducible nitric oxide synthase expression in cytokine-stimulated cardiac myocytes. Cardiovasc Res 56:86–92

    Article  PubMed  CAS  Google Scholar 

  42. Green DR, Reed JC (1998) Mitochondria and apoptosis. Science 281:1309–1312

    Article  PubMed  CAS  Google Scholar 

  43. Bialik S, Cryns VL, Drincic A et al (1999) The mitochondrial apoptotic pathway is activated by serum and glucose deprivation in cardiac myocytes. Circ Res 85:403–414

    PubMed  CAS  Google Scholar 

  44. Oltvai ZN, Milliman CL, Korsmeyer SJ (1993) Bcl-2 heterodimerizes in vivo with a conserved homolog, Bax, that accelerates programmed cell death. Cell 74:609–619

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by National Natural Science Foundation of China (No. 30570745), Post-graduate Innovation Projects of Jiangsu Province (JX22013013), and “135” key laboratory of Jiangsu Province (SK200205). We also thank Dr. Wei Dong (Nanjing University, China) for his M-PEI.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jinan Zhang.

Additional information

Jin Yang and Junhong Wang contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yang, J., Wang, J., Zhu, S. et al. C-reactive protein augments hypoxia-induced apoptosis through mitochondrion-dependent pathway in cardiac myocytes. Mol Cell Biochem 310, 215–226 (2008). https://doi.org/10.1007/s11010-007-9683-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-007-9683-3

Keywords

Navigation