Skip to main content
Log in

Apoptosis and oncosis in acute coronary syndromes: Assessment and implications

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

The rational design of therapeutic interventions for protection of ischemic myocardium from ultimate death requires an understanding of the mechanistic basis of cardiomyocyte (CM) cell death, its timing and the tools for its quantification. Until recently, CM cell death following ischemia and/or reperfusion was considered to involve necrosis or ‘accidental cell death’ from very early on. Collective evidence over the past decade indicates that early CM cell death after myocardial ischemia and post-ischemic reperfusion involves apoptosis with cell shrinkage and drop-out, and/or oncosis with cell swelling followed by necrosis. This paradigm shift suggests that different approaches for cardioprotection are required. Oncologists, pathologists, anatomists and basic scientists who have studied apoptosis over the last three decades separated physiological apoptosis from inappropriate apoptosis in pathological states. Until recently, cardiologists resisted the concepts of CM apoptosis and regeneration. Cumulative evidence indicating that apoptosis in the heart may occur in different cell types, spread from one cell type to another, and occur in bursts, may have profound implications for therapies aimed at protection of ischemic myocardium by targeting CM apoptosis in acute coronary syndromes. This review focuses on a critique of the methods used for the assessment of CM apoptosis and the implications of CM apoptosis in acute coronary syndromes. (Mol Cell Biochem 270: 177–200, 2005)

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Kajstura J, Cheng W, Reiss K, Clark WA, Sonnenblick EH, Krajewski S, Reed JC, Olivetti G, Anversa P: Apoptotic and necrotic myocyte cell deaths are independent contributing variables of infarct size in rats. Lab Invest 74: 86–107, 1996

    CAS  PubMed  Google Scholar 

  2. Majno G, Joris I: Apoptosis, oncosis, and necrosis. An overview of cell death. Am J Pathol 146: 3–15, 1995

    CAS  PubMed  Google Scholar 

  3. Ohno M, Takemura G, Ohno A, Misao J, Hayakawa Y, Minatoguchi S, Fujiwara T, Fujiwara H: ‘Apoptotic’ myocytes in infarct area in rabbit hearts may be oncotic myocytes with DNA fragmentation: Analysis by immunogold electron microscopy combined with in situ nick end-labeling. Circulation 98: 1422–1430, 1998

    Google Scholar 

  4. Haunstetter A, Izumo S: Apoptosis: Basic mechanisms and implications for cardiovascular disease. Circ Res 82: 1111–1129, 1998

    Google Scholar 

  5. Scarabelli T, Stephanou A, Rayment N, Pasini E, Comini L, Curello S, Ferrari R, Knight R, Latchman D: Apoptosis of endothelial cells precedes myocyte cell apoptosis in ischemia/reperfusion injury. Circulation 104: 253–256, 2001

    Google Scholar 

  6. deBlois D, Orlov SN, Hamet P: Apoptosis in cardiovascular remodeling-effect of medication. Cardiovasc Drugs Ther 15: 539–545, 2001

    Google Scholar 

  7. Kerr JF, Wyllie AH, Currie AR: Apoptosis: A basic biological phenomenon with wide-ranging implications in tissue kinetics. Br J Cancer 26: 239–257, 1972

    CAS  PubMed  Google Scholar 

  8. Hamet P, Richard L, Dam TV, Teiger E, Orlov SN, Gaboury L, Gossard F, Tremblay J: Apoptosis in target organs of hypertension. Hypertension 26: 642–648, 1995

    Google Scholar 

  9. Gottlieb RA, Burleson KO, Kloner RA, Babior BM, Engler RL: Reperfusion injury induces apoptosis in rabbit cardiomyocytes. J Clin Invest 94: 1621–1628, 1994

    Google Scholar 

  10. Takemura G, Ohno M, Hayakawa Y, Misao J, Kanoh M, Ohno A, Uno Y, Minatoguchi S, Fujiwara T, Fujiwara H: Role of apoptosis in the disappearance of infiltrated and proliferated interstitial cells after myocardial infarction. Circ Res 82: 1130–1138, 1998

    Google Scholar 

  11. Hayakawa K, Takemura G, Kanoh M, Li Y, Koda M, Kawase Y, Maruyama R, Okada H, Minatoguchi S, Fujiwara T, Fujiwara H: Inhibition of granulation tissue cell apoptosis during the subacute stage of myocardial infarction improves cardiac remodeling and dysfunction at the chronic stage. Circulation 108: 104–109, 2003

    Google Scholar 

  12. Bennett MR, Evan GI, Schwartz SM: Apoptosis of human vascular smooth muscle cells derived from normal vessels and coronary atherosclerotic plaques. J Clin Invest 95: 2266–2274, 1995

    Google Scholar 

  13. Geng YJ, Wu Q, Muszynski M, Hansson GK, Libby P: Apoptosis of vascular smooth muscle cells induced by in vitro stimulation with interferon-γ, tumor necrosis factor-alpha, and interleukin-1β. Arterioscler Thromb Vasc Biol 16: 19–27, 1996

    Google Scholar 

  14. Elsasser A, Schlepper M, Klovekorn WP, Cai WJ, Zimmermann R, Muller KD, Strasser R, Kostin S, Gagel C, Munkel B, Schaper W, Schaper J: Hibernating myocardium: An incomplete adaptation to ischemia. Circulation 96: 2920–2931, 1997

    Google Scholar 

  15. Gobé G, Browning J, Howard T, Hogg N, Winterford C, Cross R: Apoptosis occurs in endothelial cells during hypertension-induced microvascular rarefaction. J Struct Biol 118: 63–72, 1997

    Google Scholar 

  16. Itoh G, Tamura J, Suzuki M, Suzuki Y, Ikeda H, Koike M, Nomura M, Jie T, Ito K: DNA fragmentation of human infarcted myocardial cells demonstrated by the nick end labeling method and DNA agarose gel electrophoresis. Am J Pathol 146: 1325–1331, 1995

    Google Scholar 

  17. Cheng W, Li B, Kajstura J, Li P, Wolin MS, Sonnenblick EH, Hintze TH, Olivetti G, Anversa P: Stretch induced programmmed cell death. J Clin Invest 96: 2247–2259, 1995

    Google Scholar 

  18. Bjorkerud S, Bjorkerud B: Apoptosis is abundant in human atherosclerotic lesions, especially in inflammatory cells (macrophages and T cells), and may contribute to the accumulation of gruel and plaque instability. Am J Pathol 149: 367–380, 1996

    Google Scholar 

  19. Columbano A: Cell death: Current difficulties in discriminating apoptosis from necrosis in the context of pathological processes in vivo. J Cell Biochem 58: 181–190, 1995

    Google Scholar 

  20. Rouvier E, Luciani MF, Golstein P: Fas involvement in Ca(2+)-independent T cell-mediated cytotoxicity. J Exp Med 177: 195–200, 1993

    Article  CAS  PubMed  Google Scholar 

  21. Anversa P, Kajstura J, Cheng W, Reiss K, Cigola E, Olivetti G: Insulin-like growth factor-1 and myocyte growth: The danger of a dogma. Part I. Postnatal myocardial development: Normal growth. Cardiovasc Res 32: 219–225, 1996

    Google Scholar 

  22. Anversa P, Kajstura J, Cheng W, Reiss K, Cigola E, Olivetti G: Insulin-like growth factor-1 and myocyte growth: The danger of a dogma part II. Induced myocardial growth: Pathologic hypertrophy. Cardiovasc Res 32: 484–495, 1996

    Google Scholar 

  23. Anversa P, Nadal-Ginard B: Myocyte renewal and ventricular remodelling. Nature 415: 240–243, 2002

    Article  CAS  PubMed  Google Scholar 

  24. Yamamoto S, Yang G, Zablocki D, Liu J, Hong C, Kim SJ, Soler S, Odashima M, Thaisz J, Yehia G, Molina CA, Yatani A, Vatner DE, Vatner SF, Sadoshima J: Activation of Mst1 causes dilated cardiomyopathy by stimulating apoptosis without compensatory ventricular myocyte hypertrophy. J Clin Invest 111: 1463–1474, 2003

    Google Scholar 

  25. Wencker D, Chandra M, Nguyen K, Miao W, Garantziotis S, Factor SM, Shirani J, Armstrong RC, Kitsis RN: A mechanistic role for cardiac myocyte apoptosis in heart failure. J Clin Invest 111: 1497–1504, 2003

    Google Scholar 

  26. James TN: Normal and abnormal consequences of apoptosis in the human heart. From postnatal morphogenesis to paroxysmal arrhythmias. Circulation 90: 556–573, 1994

    Google Scholar 

  27. James TN, St Martin E, Willis PW 3rd, Lohr TO: Apoptosis as a possible cause of gradual development of complete heart block and fatal arrhythmias associated with absence of the AV node, sinus node, and internodal pathways. Circulation 93: 1424–1438, 1996

    Google Scholar 

  28. James TN, Terasaki F, Pavlovich ER, Vikhert AM: Apoptosis and pleomorphic micromitochondriosis in the sinus nodes surgically excised from five patients with the long QT syndrome. J Lab Clin Med 122: 309–323, 1993

    Google Scholar 

  29. Dini L, Lentini A, Diez GD, Rocha M, Falasca L, Serafino L, Vidal-Vanaclocha F: Phagocytosis of apoptotic bodies by liver endothelial cells. J Cell Sci 108: 967–973, 1995

    Google Scholar 

  30. Hayakawa K, Takemura G, Koda M, Kawase Y, Maruyama R, Li Y, Minatoguchi S, Fujiwara T, Fujiwara H: Sensitivity to apoptosis signal, clearance rate, and ultrastructure of fas ligand-induced apoptosis in in vivo adult cardiac cells. Circulation 105: 3039–3045, 2002

    Google Scholar 

  31. Teiger E, Than VD, Richard L, Wisnewsky C, Tea BS, Gaboury L, Tremblay J, Schwartz K, Hamet P: Apoptosis in pressure overload-induced heart hypertrophy in the rat. J Clin Invest 97: 2891–2897, 1996

    Google Scholar 

  32. Savill J, Fadok V, Henson P, Haslett C: Phagocyte recognition of cells undergoing apoptosis. Immunol Today 14: 131–136, 1993

    Google Scholar 

  33. Gavrieli Y, Sherman Y, Ben-Sasson SA: Identification of programmed cell death in situ via specific labeling of nuclear DNA fragmentation. J Cell Biol 119: 493–501, 1992

    Article  CAS  PubMed  Google Scholar 

  34. Clarke PG: Developmental cell death: Morphological diversity and multiple mechanisms. Anat Embryol (Berl) 181: 195–213, 1990

    Google Scholar 

  35. Wyllie AH: Glucocorticoid-induced thymocyte apoptosis is associated with endogenous endonuclease activation. Nature 284: 555–556, 1980

    CAS  PubMed  Google Scholar 

  36. Darzynkiewicz Z, Bruno S, Del Bino G, Gorczyca W, Hotz MA, Lassota P, Traganos F: Features of apoptotic cells measured by flow cytometry. Cytometry 13: 795–808, 1992

    Google Scholar 

  37. Arends MJ, Morris RG, Wyllie AH: Apoptosis. The role of the endonuclease. Am J Pathol 136: 593–608, 1990

    Google Scholar 

  38. Kroemer G, Petit P, Zamzami N, Vayssiere JL, Mignotte B: The biochemistry of programmed cell death. FASEB J 9: 1277–1287, 1995

    CAS  PubMed  Google Scholar 

  39. Goldspink DF, Burniston JG and Tan L-B: Cardiomyocyte death and the ageing and failing heart. Expt Physiol 88: 447–458, 2003

    Google Scholar 

  40. Dispersyn GD, Borgers M: Apoptosis in the heart: About programmed cell death and survival. News Physiol Sci 16: 41–47, 2001

    Google Scholar 

  41. Susin SA, Daugas E, Ravagnan L, Samejima K, Zamzami N, Loeffler M, Costantini P, Ferri KF, Irinopoulou T, Prevost MC, Brothers G, Mak TW, Penninger J, Earnshaw WC, Kroemer G: Two distinct pathways leading to nuclear apoptosis. J Exp Med 192: 571–580, 2000

    Google Scholar 

  42. Guo Y, Srinivasula SM, Druilhe A, Fernandes-Alnemri T, Alnemri ES: Caspase-2 induces apoptosis by releasing proapoptotic proteins from mitochondria. J Biol Chem 277: 13430–13437, 2002

    Google Scholar 

  43. Kerr JFR, Harmon BV: Definition and incidence of apoptosis: An historical perspective. In: L. D. Tomei, F. O. Cope (eds). Apoptosis: The Molecular Basis of Cell Death. Cold Spring Harbor Laboratory Press, New York, 1991, pp 5–29

    Google Scholar 

  44. Saunders JW, Fallon JF: Cell Death in Morphogenesis. Major Problems in Developmental Biology. Academic Press, New York, 1967, pp 289–314

    Google Scholar 

  45. Gujral JS, Bucci TJ, Farhood A, Jaeschke H: Mechanism of cell death during warm hepatic ischemia–reperfusion in rats: Apoptosis or necrosis? Hepatology 33: 397–405, 2001

    Article  CAS  PubMed  Google Scholar 

  46. Jaeschke H, Lemasters JJ: Apoptosis versus oncotic necrosis in hepatic ischemia/reperfusion injury. Gastroenterology 125: 1246–1257, 2003

    Google Scholar 

  47. Shiraishi J, Tatsumi T, Keira N, Akashi K, Mano A, Yamanaka S, Matoba S, Asayama J, Yaoi T, Fushiki S, Fliss H, Nakagawa M: Important role of energy-dependent mitochondrial pathways in cultured rat cardiac myocyte apoptosis. Am J Physiol 281: H1637–H1647, 2001

    Google Scholar 

  48. Los M, Mozoluk M, Ferrari D, Stepczynska A, Stroh C, Renz A, Herceg Z, Wang ZQ, Schulze-Osthoff K: Activation and caspase-mediated inhibition of PARP: A molecular switch between fibroblast necrosis and apoptosis in death receptor signaling. Mol Biol Cell 13: 978–988, 2002

    Google Scholar 

  49. Alano CC, Ying W, Swanson RA: Poly(ADP-ribose) polymerase-1-mediated cell death in astrocytes requires NAD+ depletion and mitochondrial permeability transition. J Biol Chem 279: 18895–18902, 2004

    Google Scholar 

  50. Meilhac O, Escargueil-Blanc I, Thiers JC, Salvayre R, Negre-Salvayre A: Bcl-2 alters the balance between apoptosis and necrosis, but does not prevent cell death induced by oxidized low density lipoproteins. FASEB J 13: 485–494, 1999

    Google Scholar 

  51. Camilleri-Broet S, Vanderwerff H, Caldwell E, Hockenbery D., Camilleri-Broet S, Vanderwerff H, Caldwell E, Hockenbery D: Distinct alterations in mitochondrial mass and function characterize different models of apoptosis. Exp Cell Res 239: 277–292, 1998

    Google Scholar 

  52. Buja LM, Eigenbrodt ML, Eigenbrodt EH: Apoptosis and necrosis. Basic types and mechanisms of cell death. Arch Pathol Lab Med 117: 1208–1214, 1993

    Google Scholar 

  53. Lopaschuk GD: Alterations in fatty acid oxidation during reperfusion of the heart after myocardial ischemia. Am J Cardiol 80: 11A–16A, 1997

    Google Scholar 

  54. Fliss H, Gattinger D: Apoptosis in ischemic and reperfusion rat myocardium. Circ Res 79: 949–956, 1996

    CAS  PubMed  Google Scholar 

  55. Saraste A, Pulkki K, Kallajoki M, Henriksen K, Parvinen M, Voipio-Pulkki LM: Apoptosis in acute myocardial infarction. Circulation 95: 320–323, 1997

    CAS  PubMed  Google Scholar 

  56. Olivetti G, Quaini F, Sala R, Lagrasta C, Corradi D, Bonacina E, Gambert SR, Cigola E, Anversa P: Acute myocardial infarction in humans is associated with activation of programmed myocyte cell death in the surviving portion of the heart. J Mol Cell Cardiol 28: 2005–2016, 1994

    Google Scholar 

  57. Bialik S, Geenen DL, Sasson IE, Cheng R, Horner JW, Evans SM, Lord EM, Koch CJ, Kitsis RN: Myocyte apoptosis during acute myocardial infarction in the mouse localizes to hypoxic regions but occurs independently of p53. J Clin Invest 100: 1363–1372, 1997

    Google Scholar 

  58. Wyllie AH, Morris RG, Smith AL, Dunlop D: Chromatin cleavage in apoptosis: Association with condensed chromatin morphology and dependence on macromolecular synthesis. J Pathol 142: 67–77, 1984

    CAS  PubMed  Google Scholar 

  59. Takemura G, Kato S, Aoyama T, Hayakawa Y, Kanoh M, Maruyama R, Arai M, Nishigaki K, Minatoguchi S, Fukuda K, Fujiwara T, Fujiwara H: Characterization of ultrastructure and its relation with DNA fragmentation in Fas-induced apoptosis of cultured cardiac myocytes. J Pathol 193: 546–556, 2001

    Google Scholar 

  60. Sharov VG, Sabbah HN, Shimoyama H, Goussev AV, Lesch M, Goldstein S: Evidence of cardiocyte apoptosis in myocardium of dogs with chronic heart failure. Am J Pathol 148: 141–149, 1996

    Google Scholar 

  61. Schmitt JP, Schroder J, Schunkert H, Birnbaum DE, Aebert H: Role of apoptosis in myocardial stunning after open heart surgery. Ann Thorac Surg 73: 1229–1235, 2002

    Google Scholar 

  62. Kostin S, Pool L, Elsasser A, Hein S, Drexler HC, Arnon E, Hayakawa Y, Zimmermann R, Bauer E, Klovekorn WP, Schaper J: Myocytes die by multiple mechanisms in failing human hearts. Circ Res 92: 715–724, 2003

    Article  Google Scholar 

  63. Kanoh M, Takemura G, Misao J, Hayakawa Y, Aoyama T, Nishigaki K, Noda T, Fujiwara T, Fukuda K, Minatoguchi S, Fujiwara H: Significance of myocytes with positive DNA in situ nick end-labeling (TUNEL) in hearts with dilated cardiomyopathy: Not apoptosis but DNA repair. Circulation 99: 2757–2764, 1999

    Google Scholar 

  64. Hoffstein S, Gennaro DE, Fox AC, Hirsch J, Streuli F, Weissmann G: Colloidal lanthanum as a marker for impaired plasma membrane permeability in ischemic dog myocardium. Am J Pathol 79: 207–218, 1975

    Google Scholar 

  65. Baroldi G: Different types of myocardial necrosis in coronary heart disease: A pathophysiologic review of their functional significance. Am Heart J 89: 742–752, 1975

    Google Scholar 

  66. Baroldi G: Myocardial cell death, including ischemic heart disease and its complications. In: M.D. Silver, A.I. Gottlieb, F.J. Schoen (eds). Cardiovascular Pathology. Churchill and Livingstone, NY. Chap 8, 2001, pp 198–215

    Google Scholar 

  67. Hutchins GM, Bulkley BH: Correlation of myocardial contraction band necrosis and vascular patency. A study of coronary artery bypass graft anastomoses at branch points. Lab Invest 36: 642–648, 1977

    Google Scholar 

  68. Becker LC, Jeremy RW, Schaper J, Schaper W: Ultrastructural assessment of myocardial necrosis occurring during ischemia and 3-h reperfusion in the dog. Am J Physiol 277: H243–H252, 1999

    Google Scholar 

  69. Ciechanover A, Schwartz AL: The ubiquitin-mediated proteolytic pathway: Mechanisms of recognition of the proteolytic substrate and involvement in the degradation of native cellular proteins. FASEB J 8: 182–191, 1994

    Google Scholar 

  70. Bessis MC: Mort d’une cellule: Analyse d’un film en contraste de phase. Semain Hôpitaux 60: 21–32, 1955

    Google Scholar 

  71. Maruyama R, Takemura G, Aoyama T, Hayakawa K, Koda M, Kawase Y, Qiu X, Ohno Y, Minatoguchi S, Miyata K, Fujiwara T, Fujiwara H: Dynamic process of apoptosis in adult rat cardiomyocytes analyzed using 48-h videomicroscopy and electron microscopy: Beating and rate are associated with the apoptotic process. Am J Pathol 159: 683–6891, 2001

    Google Scholar 

  72. Hofstra L, Liem IH, Dumont EA, Boersma HH, van Heerde WL, Doevendans PA, De Muinck E, Wellens HJ, Kemerink GJ, Reutelingsperger CP, Heidendal GA: Visualization of cell death in vivo in patients with acute myocardial infarction. Lancet 356: 209–212, 2000

    Google Scholar 

  73. Enari M, Sakahira H, Yokoyama H, Okawa K, Iwamatsu A, Nagata S: A caspase-activated DNase that degrades DNA during apoptosis, and its inhibitor ICAD. Nature 391: 43–50, 1998

    Article  CAS  PubMed  Google Scholar 

  74. Apoptag® Apoptosis Detection Kit Manual. Serologicals Corporation, Norcross, Georgia. www.serologicals.com. 2004

  75. Olivetti G, Abbi R, Quaini F, Kajstura J, Cheng W, Nitahara JA, Quaini E, Di Loreto C, Beltrami CA, Krajewski S, Reed JC, Anversa P: Apoptosis in the failing human heart. N Engl J Med 336: 1131–1141, 1997

    Google Scholar 

  76. Anversa P: Myocyte death in the pathological heart. Circ Res 86: 121–124, 2000

    Google Scholar 

  77. Umemura S, Yasuda M, Osamura RY, Kawarada Y, Sugiyama T, Tsutsumi Y: Enhancement of TdT-mediated dUTP-biotin nick end-labeling (TUNEL) method using mung bean nuclease, a single-stranded DNA digestion enzyme. J Histochem Cytochem 44(2): 125–132, 1996

    Google Scholar 

  78. Charriaut-Marlangue C, Ben-Ari Y: A cautionary note on the use of the TUNEL stain to determine apoptosis. Neuroreport 7: 61–64, 1995

    CAS  PubMed  Google Scholar 

  79. Musat-Marcu S, Gunther HE, Jugdutt BI, Docherty JC: Ischemia–reperfusion induces apoptosis in rat myocardium through a cycloheximide-inhibitable pathway. J Mol Cell Cardiol 31: 1073–1082, 1999

    Google Scholar 

  80. Moudgil R, Menon V, Xu Y, Musat-Marcu S, Kumar D, Jugdutt BI: Postischemic apoptosis and functional recovery after angiotensin II type 1 receptor blockade in working rat hearts. J of Hypertension 19: 1121–1129, 2001

    Google Scholar 

  81. Kerr JF, Winterford CM, Harmon BV: Apoptosis. Its significance in cancer and cancer therapy. Cancer 73: 2013–2026, 1994

    Google Scholar 

  82. Gerschenson LE, Rotello RJ: Apoptosis: A different type of cell death. FASEB J 6: 2450–2455, 1992

    CAS  PubMed  Google Scholar 

  83. Gold R, Schmied M, Giegerich G, Breitschopf H, Hartung HP, Toyka KV, Lassmann H: Differentiation between cellular apoptosis and necrosis by the combined use of in situ tailing and nick translation techniques. Lab Invest 71: 219–225, 1994

    CAS  PubMed  Google Scholar 

  84. Cai W, Devaux B, Schaper W, Schaper J: The role of Fas/APO 1 and apoptosis in the development of human atherosclerotic lesions. Atherosclerosis 131: 177–186, 1997

    Google Scholar 

  85. Bardales RH, Hailey LS, Xie SS, Schaefer RF, Hsu SM: In situ apoptosis assay for the detection of early acute myocardial infarction. Am J Pathol 149: 821–829, 1996

    Google Scholar 

  86. Geng YJ, Libby P: Evidence for apoptosis in advanced human atheroma. Colocalization with interleukin-1 beta-converting enzyme. Am J Pathol 147: 251–266, 1995

    Google Scholar 

  87. Dong C, Wilson JE, Winters GL, McManus BM: Human transplant coronary artery disease: Pathological evidence for Fas-mediated apoptotic cytotoxicity in allograft arteriopathy. Lab Invest 74: 921–931, 1996

    Google Scholar 

  88. Goussev A, Sharov VG, Shimoyama H, Tanimura M, Lesch M, Goldstein S, Sabbah HN: Effects of ACE inhibition on cardiomyocyte apoptosis in dogs with heart failure. Am J Physiol 275: H626–H631, 1998

    Google Scholar 

  89. Abbate A, Biondi-Zoccai GG, Bussani R, Dobrina A, Camilot D, Feroce F, Rossiello R, Baldi F, Silvestri F, Biasucci LM, Baldi A: Increased myocardial apoptosis in patients with unfavorable left ventricular remodeling and early symptomatic post-infarction heart failure. J Am Coll Cardiol 41: 753–760, 2003

    Google Scholar 

  90. Kang PM, Haunstetter A, Aoki H, Usheva A, Izumo S: Morphological and molecular characterization of adult cardiomyocyte apoptosis during hypoxia and reoxygenation. Circ Res 87: 118–125, 2000

    Google Scholar 

  91. Sam F, Sawyer DB, Chang DL, Eberli FR, Ngoy S, Jain M, Amin J, Apstein CS, Colucci WS: Progressive left ventricular remodeling and apoptosis late after myocardial infarction in mouse heart. Am J Physiol 279: H422–H428, 2000

    Google Scholar 

  92. Palojoki E, Saraste A, Eriksson A, Pulkki K, Kallajoki M, Voipio-Pulkki LM, Tikkanen I: Cardiomyocyte apoptosis and ventricular remodeling after myocardial infarction in rats. Am J Physiol 280: H2726–H2731, 2001

    Google Scholar 

  93. Wijsman JH, Jonker RR, Keijzer R, van de Velde CJ, Cornelisse CJ, van Dierendonck JH: A new method to detect apoptosis in paraffin sections: In situ end-labeling of fragmented DNA. J Histochem Cytochem 41: 7–12, 1993

    CAS  PubMed  Google Scholar 

  94. Kockx MM, Muhring J, Knaapen MW, de Meyer GR: RNA synthesis and splicing interferes with DNA in situ end labeling techniques used to detect apoptosis. Am J Pathol 152: 885–888, 1998

    Google Scholar 

  95. Lutgens E, Daemen M, Kockx M, Doevendans P, Hofker M, Havekes L, Wellens H, de Muinck ED: Atherosclerosis in APOE*3-Leiden transgenic mice: From proliferative to atheromatous stage. Circulation 99: 276–283, 1999

    Google Scholar 

  96. Vaux DL, Weissman IL, Kim SK: Prevention of programmed cell death in Caenorhabditis elegans by human bcl-2. Science 258: 1955–1957, 1992

    Google Scholar 

  97. Migheli A, Attanasio A, Schiffer D: Ultrastructural detection of DNA strand breaks in apoptotic neural cells by in situ end-labelling techniques. J Pathol 176: 27–35, 1995

    Google Scholar 

  98. Oberhammer F, Wilson JW, Dive C, Morris ID, Hickman JA, Wakeling AE, Walker PR, Sikorska M: Apoptotic death in epithelial cells: Cleavage of DNA to 300 and/or 50 kb fragments prior to or in the absence of internucleosomal fragmentation. EMBO J 12: 3679–3684, 1993

    Google Scholar 

  99. Walker PR, Kokileva L, LeBlanc J, Sikorska M: Detection of the initial stages of DNA fragmentation in apoptosis. Biotechniques 15: 1032–1040, 1993

    Google Scholar 

  100. Weaver VM, Lach B, Walker PR, Sikorska M: Role of proteolysis in apoptosis: Involvement of serine proteases in internucleosomal DNA fragmentation in immature thymocytes. Biochem Cell Biol 71: 488–500, 1993

    Google Scholar 

  101. Roy C, Brown DL, Little JE, Valentine BK, Walker PR, Sikorska M, Leblanc J, Chaly N: The topoisomerase II inhibitor teniposide (VM-26) induces apoptosis in unstimulated mature murine lymphocytes. Exp Cell Res 200: 416–424, 1992

    Google Scholar 

  102. Weil M, Jacobson MD, Coles HS, Davies TJ, Gardner RL, Raff KD, Raff MC: Constitutive expression of the machinery for programmed cell death. J Cell Biol 133: 1053–1059, 1996

    Google Scholar 

  103. Ueda N, Shah SV: Endonuclease-induced DNA damage and cell death in oxidant injury to renal tubular epithelial cells. J Clin Invest 90: 2593–2597, 1992

    Google Scholar 

  104. Bingisser R, Stey C, Weller M, Groscurth P, Russi E, Frei K: Apoptosis in human alveolar macrophages is induced by endotoxin and is modulated by cytokines. Am J Respir Cell Mol Biol 15: 4–70, 1996

    Google Scholar 

  105. Dimmeler S, Haendeler J, Nehls M, Zeiher AM: Suppression of apoptosis by nitric oxide via inhibition of interleukin-1beta-converting enzyme (ICE)-like and cysteine protease protein (CPP)-32-like proteases. J Exp Med 185: 601–607, 1997

    Google Scholar 

  106. Zunino SJ, Singh MK, Bass J, Picker LJ: Immunodetection of histone epitopes correlates with early stages of apoptosis in activated human peripheral T lymphocytes. Am J Pathol 149: 653–663, 1996

    Google Scholar 

  107. Krown KA, Page MT, Nguyen C, Zechner D, Gutierrez V, Comstock KL, Glembotski CC, Quintana PJE, Sabbadini RA: Tumor necrosis factor alpha-induced apoptosis in cardiac myocytes: Involvement of the sphingolipid signaling cascade in cardiac cell death. J Clin Invest 98: 2854–2865, 1996

    CAS  PubMed  Google Scholar 

  108. Didenko VV, Hornsby PJ: Presence of double-strand breaks with single-base 3′ overhangs in cells undergoing apoptosis but not necrosis. J Cell Biol 135: 1369–1376, 1996

    Google Scholar 

  109. Anversa P, Leri A, Kajstura J: Myocardial basis for heart failure: Role of cell death. In: D.L. Mann (ed). Heart Failure. A Companion to Braunwald’s Heart Disease. Saunders, Pennsylvania, 2004, pp 71–89

    Google Scholar 

  110. Leri A, Liu Y, Claudio PP, Kajstura J, Wang X, Wang S, Kang P, Malhotra A, Anversa P: Insulin-like growth factor-1 induces Mdm2 and down-regulates p53, attenuating the myocyte renin-angiotensin system and stretch-mediated apoptosis. Am J Pathol 154: 567–580, 1999

    Google Scholar 

  111. Shizukuda Y, Buttrick PM, Geenen DL, Borczuk AC, Kitsis RN, Sonnenblick EH: β-adrenergic stimulation causes cardiocyte apoptosis: Influence of tachycardia and hypertrophy. Am J Physiol 275: H961–H968, 1998

    Google Scholar 

  112. Nolan AC, Clark WA Jr, Karwoski T, Zak R: Patterns of cellular injury in myocardial ischemia determined by monoclonal antimyosin. Proc Natl Acad Sci U S A 80: 6046–6050, 1983

    Google Scholar 

  113. Staley K, Blaschke AJ, Chun J: Apoptotic DNA fragmentation is detected by a semiquantitative ligation mediated PCR of blunt DNA ends. Cell Death Diff 4: 66–75, 1997

    Google Scholar 

  114. Todor A, Sharov VG, Tanhecho EJ, Silverman N, Bernabei A, and Sabbah H N: Hypoxia-induced cleavage of caspase-3 and DFF45/ICAD in human failed cardiomyocytes. Am J Physiol Heart Circ Physiol 283: H990–H995, 2002

    Google Scholar 

  115. Collins RJ, Harmon BV, Gobe GC, Kerr JF: Internucleosomal DNA cleavage should not be the sole criterion for identifying apoptosis. Int J Radiat Biol 61: 451–453, 1992

    Google Scholar 

  116. Susin SA, Lorenzo HK, Zamzami N, Marzo I, Snow BE, Brothers GM, Mangion J, Jacotot E, Costantini P, Loeffler M, Larochette N, Goodlett DR, Aebersold R, Siderovski DP, Penninger JM, Kroemer G: Molecular characterization of mitochondrial apoptosis-inducing factor. Nature 397: 441–446, 1999

    Article  CAS  PubMed  Google Scholar 

  117. Polzar B, Zanotti S, Stephan H, Rauch F, Peitsch MC, Irmler M, Tschopp J, Mannherz HG: Distribution of deoxyribonuclease I in rat tissues and its correlation to cellular turnover and apoptosis (programmed cell death). Eur J Cell Biol 64: 200–210, 1994

    Google Scholar 

  118. Ueda N, Walker PD, Hsu SM, Shah SV: Activation of a 15-kDa endonuclease in hypoxia/reoxygenation injury without morphologic features of apoptosis. Proc Natl Acad Sci USA 92: 7202–7206, 1995

    Google Scholar 

  119. Charriaut-Marlangue C, Margaill I, Plotkine M, Ben-Ari Y: Early endonuclease activation following reversible focal ischemia in the rat brain. J Cereb Blood Flow Metab 15: 385–388, 1995

    Google Scholar 

  120. Vaux DL: Toward an understanding of the molecular mechanisms of physiological cell death. Proc Natl Acad Sci USA 90: 786–789, 1993

    Google Scholar 

  121. Tanaka M, Ito H, Adachi S, Akimoto H, Nishikawa T, Kasajima T, Marumo F, Hiroe M: Hypoxia induces apoptosis with enhanced expression of Fas antigen messenger RNA in cultured neonatal rat cardiomyocytes. Circ Res 75: 426–433, 1994

    CAS  PubMed  Google Scholar 

  122. Maulik N, Yoshida T, Das DK: Oxidative stress developed during the reperfusion of ischemic myocardium induces apoptosis. Free Radic Biol Med 24: 869–875, 1998

    Google Scholar 

  123. Yue TL, Ma XL, Wang X, Romanic AM, Liu GL, Louden C, Gu JL, Kumar S, Poste G, Ruffolo RR Jr, Feuerstein GZ: Possible involvement of stress-activated protein kinase signaling pathway and Fas receptor expression in prevention of ischemia/reperfusion-induced cardiomyocyte apoptosis by carvedilol. Circ Res 82: 166–174, 1998

    Google Scholar 

  124. Liu Y, Cigola E, Cheng W, Kajstura J, Olivetti G, Hintze TH, Anversa P: Myocyte nuclear mitotic division and programmed myocyte cell death characterize the cardiac myopathy induced by rapid ventricular pacing in dogs. Lab Invest 73: 771–787, 1995

    CAS  PubMed  Google Scholar 

  125. Szabolcs M, Michler RE, Yang X, Aji W, Roy D, Athan E, Sciacca RR, Minanov OP, Cannon PJ: Apoptosis of cardiac myocytes during cardiac allograft rejection. Relation to induction of nitric oxide synthase. Circulation 94: 1665–1673, 1996

    Google Scholar 

  126. Li Z, Bing OH, Long X, Robinson KG, Lakatta EG: Increased cardiomyocyte apoptosis during the transition to heart failure in the spontaneously hypertensive rat. Am J Physiol 272: H2313–H2319, 1997

    CAS  PubMed  Google Scholar 

  127. Mallat Z, Tedgui A, Fontaliran F, Frank R, Durigon M, Fontaine G: Evidence of apoptosis in arrhythmogenic right ventricular dysplasia. N Engl J Med 335: 1190–1196, 1996

    Google Scholar 

  128. Kawano H, Okada R, Kawano Y, Sueyoshi N, Shirai T: Apoptosis in acute and chronic myocarditis. Jpn Heart J 35: 745–750, 1994

    Google Scholar 

  129. Eefting F, Rensing B, Wigman J, Pannekoek WJ, Liu WM, Cramer MJ, Lips DJ, Doevendans PA: Role of apoptosis in reperfusion injury. Cardiovasc Res 61: 414–426, 2004

    Article  CAS  PubMed  Google Scholar 

  130. Narula J, Haider N, Virmani R, DiSalvo TG, Kolodgie FD, Hajjar RJ, Schmidt U, Semigran MJ, Dec GW, Khaw BA: Apoptosis in myocytes in end-stage heart failure. N Eng J Med 335: 1182–1189, 1996

    Google Scholar 

  131. Veinot JP, Gattinger DA, Fliss H: Early apoptosis in human myocardial infarcts. Hum Pathol 28: 485–492, 1997

    Google Scholar 

  132. Yao M, Keogh A, Spratt P, dos Remedios CG, Kiessling PC: Elevated DNase I levels in human idiopathic dilated cardiomyopathy: An indicator of apoptosis? J Mol Cell Cardiol 28: 95–101, 1996

    Google Scholar 

  133. Cook SA, Sugden PH, Clerk A: Regulation of bcl-2 family proteins during development and in response to oxidative stress in cardiac myocytes: Association with changes in mitochondrial membrane potential. Circ Res 85: 940–949, 1999

    Google Scholar 

  134. Nishigaki K, Minatoguchi S, Asano K, Noda T, Sano H, Kumada H, Tanaka T, Watanabe S, Seishima M, Fujiwara H: Plasma levels of soluble Fas and Fas ligand, apoptosis signaling receptor molecular, in patients with congestive heart failure. Abstract. Circulation 94(suppl I): I–32, 1996

    Google Scholar 

  135. Misao J, Hayakawa Y, Ohno M, Kato S, Fujiwara T, Fujiwara H: Expression of bcl-2 protein, an inhibitor of apoptosis, and Bax, an accelerator of apoptosis, in ventricular myocytes of human hearts with myocardial infarction. Circulation 94: 1505–1512, 1996

    Google Scholar 

  136. Pollman MJ, Hall JL, Mann MJ, Zhang L, Gibbons GH: Inhibition of neointimal cell bcl-x expression induces apoptosis and regression of vascular disease. Nat Med 4: 222–227, 1998

    Google Scholar 

  137. Adams JM, Cory S: The Bcl-2 protein family: Arbiters of cell survival. Science 281: 1322–1326, 1998

    Article  CAS  PubMed  Google Scholar 

  138. Oltvai ZN, Milliman CL, Korsmeyer SJ: Bcl-2 heterodimerizes in vivo with a conserved homolog, Bax, that accelerates programmed cell death. Cell 74: 609–619, 1993

    Article  PubMed  Google Scholar 

  139. Hockenbery D, Nunez G, Milliman C, Schreiber RD, Korsmeyer SJ: Bcl-2 is an inner mitochondrial membrane protein that blocks programmed cell death. Nature 348: 334–336, 1990

    Article  CAS  PubMed  Google Scholar 

  140. Allsopp TE, Wyatt S, Paterson HF, Davies AM: The proto-oncogene bcl-2 can selectively rescue neurotrophic factor-dependent neurons from apoptosis. Cell 73: 295–307, 1993

    Google Scholar 

  141. Kirshenbaum LA, de Moissac D: The bcl-2 gene product prevents programmed cell death of ventricular myocytes. Circulation 96: 1580–1585, 1997

    Google Scholar 

  142. Bennett MR, Evan GI, Schwartz SM: Apoptosis of rat vascular smooth muscle cells is regulated by p53-dependent and -independent pathways. Circ Res 77: 266–273, 1995

    Google Scholar 

  143. Yin XM, Oitval ZN, Korsmeyer SJ: BH1 and BH2 domains of Bcl-2 are required for inhibition of apoptosis and heterodimerization with Bax. Nature 369: 272–273, 1994

    Google Scholar 

  144. Polyak K, Xia Y, Zweier JL, Kinzler KW, Vogelstein B: A model for p53-induced apoptosis. Nature 389: 300–305, 1997

    Article  CAS  PubMed  Google Scholar 

  145. Donehower LA, Harvey M, Siagle BL, McArthur MJ, Montgomery JR, Butel JS, Bradley R: Mice deficient for p53 are developmentally normal but susceptible to spontaneous tumours. Nature 356: 215–221, 1997

    Google Scholar 

  146. Leri A, Fiordaliso F, Setoguchi M, Limana F, Bishopric NH, Kajstura J, Webster K, Anversa P: Inhibition of p53 function prevents renin-angiotensin system activation and stretch-mediated myocyte apoptosis. Am J Pathol 157: 843–857, 2000

    Google Scholar 

  147. Leri A, Claudio PP, Li Q, Wang X, Reiss K, Wang S, Malhotra A, Kajstura J, Anversa P: Stretch-mediated release of angiotensin II induces myocyte apoptosis by activating p53 that enhances the local renin-angiotensin system and decreases the Bcl-2-to-Bax protein ratio in the cell. J Clin Invest 101: 1326–1342, 1998

    Google Scholar 

  148. Pierzchalski P, Reiss K, Cheng W, Cirielli C, Kajstura J, Nitahara JA, Rizk M, Capogrossi MC, Anversa P: p53 induces myocyte apoptosis via the activation of the renin-angiotensin system. Exp Cell Res 234: 57–65, 1997

    Google Scholar 

  149. Leri A, Liu Y, Malhotra A, Li Q, Stiegler P, Claudio PP, Giordano A, Kajstura J, Hintze TH, Anversa P: Pacing-induced heart failure in dogs enhances the expression of p53 and p53-dependent genes in ventricular myocytes. Circulation 97: 194–203, 1998

    Google Scholar 

  150. Ogasawara J, Watanabe-Fukunaga R, Adachi M, Matsuzawa A, Kasugai T, Kitamura Y, Itoh N, Suda T, Nagata S: Lethal effect of the anti-Fas antibody in mice. Nature 364: 806–809, 1993

    Article  CAS  PubMed  Google Scholar 

  151. Lee P, Sata M, Lefer DJ, Factor SM, Walsh K, Kitsis RN: Fas pathway is a critical mediator of cardiac myocyte death and MI during ischemia-reperfusion in vivo. Am J Physiol 284: H456–H463, 2003

    Google Scholar 

  152. Natoli G, Costanzo A, Guido F, MorettiF, Levrero M: Apoptotic, non-apoptotic, and anti-apoptotic pathways of tumor necrosis factor signaling. Biochem Pharmacol 56: 915–920, 1998

    Google Scholar 

  153. Nishigaki K, Minatoguchi S, Seishima M, Asano K, Noda T, Yasuda N, Sano H, Kumada H, Takemura M, Noma A, Tanaka T, Watanabe S, Fujiwara H: Plasma Fas ligand, an inducer of apoptosis, and plasma soluble Fas, an inhibitor of apoptosis, in patients with chronic congestive heart failure. J Am Coll Cardiol 29: 1214–1220, 1997

    Google Scholar 

  154. Itoh N, Yonehara S, Ishii A, Yonehara M, Mizushima S, Sameshima M, Hase A, Seto Y, Nagata S: The polypeptide encoded by the cDNA for human cell surface antigen Fas can mediate apoptosis. Cell 66: 233–243, 1991

    Google Scholar 

  155. Golstein P, Marguet D, Depraetere V: Homology between reaper and the cell death domains of Fas and TNFR1. Cell 81: 185–186, 1995

    Google Scholar 

  156. Xiang J, Chao DT, Korsmeyer SJ: BAX-induced cell death may not require interleukin 1ß-converting enzyme-like proteases. Proc Natl Acad Sci USA 93: 14559–14563, 1996

    Google Scholar 

  157. Herskowitz A, Choi S, Ansari AA, Wesselingh S: Cytokine mRNA expression in postischemic/reperfused myocardium. Am J Pathol 146: 419–428, 1995

    Google Scholar 

  158. Ikeda U, Ohkawa F, Seino Y, Yamamoto K, Hidaka Y, Kasahara T, Kawai T, Shimada K: Serum interleukin 6 levels become elevated in acute myocardial infarction. J Mol Cell Cardiol 24: 579–584, 1992

    Google Scholar 

  159. Levine B, Kalman J, Mayer L, Fillit HM, Packer M: Elevated circulating levels of tumor necrosis factor in severe chronic heart failure. N Engl J Med 323: 236–241, 1990

    Google Scholar 

  160. Yamada T, Matsumori A, Sasayama S: Therapeutic effect of anti-tumor necrosis factor-alpha antibody on the murine model of viral myocarditis induced by encephalomyocarditis virus. Circulation 89: 846–851, 1994

    Google Scholar 

  161. Lei X, Buja LM: Measurement by quantitative reverse transcription polymerase chain reaction of the levels of tumor necrosis factor alpha mRNA in atherosclerotic arteries in Watanabe heritable hyperlipidemic rabbits. Lab Invest 74: 136–145, 1996

    Google Scholar 

  162. Nicholson DW, Ali A, Thornberry NA, Vaillancourt JP, Ding CK, Gallant M, Gareau Y, Griffin PR, Labelle M, Lazebnik YA: Identification and inhibition of the ICE/CED-3 protease necessary for mammalian apoptosis. Nature 376: 37–43, 1995

    Article  CAS  PubMed  Google Scholar 

  163. Yaoita H, Ogawa K, Maehara K, Maruyama Y: Attenuation of ischemia/reperfusion injury in rats by a caspase inhibitor. Circulation 97: 276–281, 1998

    Google Scholar 

  164. Chandrashekhar Y, Sen S, Anway R, Shuros A, Anand I: Long-term caspase inhibition ameliorates apoptosis, reduces myocardial troponin-I cleavage, protects left ventricular function, and attenuates remodeling in rats with myocardial infarction. J Am Coll Cardiol 43: 295–301, 2004

    Article  CAS  PubMed  Google Scholar 

  165. Gottlieb RA, Gruol DL, Zhu JY, Engler RL: Preconditioning in rabbit cardiomyocytes: Role of pH, vacuolar proton ATPase, and apoptosis. J Clin Invest 97: 2391–2398, 1996

    Google Scholar 

  166. Holly TA, Drincic A, Byun Y, Nakamura S, Harris K, Klocke FJ, Cryns VL: Caspase inhibition reduces myocyte cell death induced by myocardial ischemia and reperfusion in vivo. J Mol Cell Cardiol 31: 1709–1715, 1999

    Google Scholar 

  167. Kuida K, Zheng TS, Na S, Kuan C, Yang D, Karasuyama H, Rakic P, Flavell RA: Decreased apoptosis in the brain and premature lethality in CPP32-deficient mice. Nature 384: 368–372, 1996

    Google Scholar 

  168. Black SC, Huang JQ, Rezaiefar P, Radinovic S, Eberhart A, Nicholson DW, Rodger IW: Co-localization of the cysteine protease caspase-3 with apoptotic myocytes after in vivo myocardial ischemia and reperfusion in the rat. J Mol Cell Cardiol 30: 733–742, 1998

    Google Scholar 

  169. Yoshida K, Sorimachi Y, Fujiwara M, Hironaka K: Calpain is implicated in rat myocardial injury after ischemia or reperfusion. Jpn Circ J 59: 40–48, 1995

    Google Scholar 

  170. Yoshida K, Inui M, Harada K, Saido TC, Sorimachi Y, Ishihara T, Kawashima S, Sobue K: Reperfusion of rat heart after brief ischemia induces proteolysis of calspectin (nonerythroid spectrin or fodrin) by calpain. Circ Res 77: 603–610, 1995

    Google Scholar 

  171. Iwamoto H, Miura T, Okamura T, Shirakawa K, Iwatate M, Kawamura S, Tatsuno H, Ikeda Y, Matsuzaki M: Calpain inhibitor-1 reduces infarct size and DNA fragmentation of myocardium in ischemic/reperfused rat heart. J Cardiovasc Pharmacol 33: 580–586, 1999

    Google Scholar 

  172. Matsumura Y, Saeki E, Inoue M, Hori M, Kamada T, Kusuoka H: Inhomogeneous disappearance of myofilament-related cytoskeletal proteins in stunned myocardium of guinea pig. Circ Res 79: 447–454, 1996

    Google Scholar 

  173. Reiss K, Cheng W, Giorando A, DeLuca A, Li B, Kajstura J, Anversa P: Myocardial infarction is coupled with activation of cyclin and cyclin-dependent kinases in myocytes. Exp Cell Res 225: 44–54, 1996

    Google Scholar 

  174. Zhong LT, Sarafian T, Kane DJ, Charles AC, Mah SP, Edwards RH, Bredesen DE: Bcl-2 inhibits death of central neural cells induced by multiple agents. Proc Natl Acad Sci USA 90: 4533–4537, 1993

    Google Scholar 

  175. Colucci WS: Apoptosis in the heart. N Engl J Med 335: 1224–1226, 1996

    Google Scholar 

  176. Wang J, Walsh K: Resistance to apoptosis conferred by Cdk inhibitors during myocyte differentiation. Science 273: 359–3561, 1996

    Google Scholar 

  177. Poluha W, Poluha DK, Chang B, Crosbie NE, Schonhoff CM, Kilpatrick DL, Ross AH: The cyclin-dependent kinase inhibitor p21 (WAF1) is required for survival of differentiating neuroblastoma cells. Mol Cell Biol 16: 1335–1341, 1996

    Google Scholar 

  178. Meikrantz W, Schlegel R: Apoptosis and the cell cycle. J Biol Chem 58: 160–174, 1995

    Google Scholar 

  179. King KL, Cidlowski JA: Cell cycle and apoptosis: Common pathways to life and death. J Biol Chem 58: 175–180, 1995

    Google Scholar 

  180. Kirshenbaum LA, Abdellatif M, Chakraborty S, Schneider MD: Human E2F-1 reactivates cell cycle progression in ventricular myocytes and represses cardiac gene transcription. Dev Biol 179: 402–411, 1996

    Google Scholar 

  181. Cotter TG, Martin SJ: Techniques in Apoptosis. A User’s Guide. Portland Press, London, 1996, pp. 107–120

    Google Scholar 

  182. Martin SJ, Green DR, Cotter TG: Dicing with death: Dissecting the components of the apoptosis machinery. Trends Biochem Sci 19: 26–30, 1994

    Article  CAS  PubMed  Google Scholar 

  183. Honda H, Harada K, Komuro I, Terasaki F, Ueno H, Tanaka Y, Kawamura K, Yazaki Y, Hirai H: Heart-specific activation of LTK results in cardiac hypertrophy, cardiomyocyte degeneration and gene reprogramming in transgenic mice. Oncogene 18: 3821–3830, 1999

    Google Scholar 

  184. Sugden PH, Bogoyevitch MA: Intracellular signalling through protein kinases in the heart. Cardiovasc Res 30: 478–492, 1995

    Google Scholar 

  185. Seko Y, Tobe K, Takahashi N, Kaburagi Y, Kadowaki T, Yazaki Y: Hypoxia and hypoxia/reoxygenation activate Src family tyrosine kinases and p21ras in cultured rat cardiac myocytes. Biochem Biophys Res Commun 226: 530–535, 1996

    Google Scholar 

  186. Griffiths EJ, Halestrap AP: Mitochondrial non-specific pores remain closed during cardiac ischaemia, but open upon reperfusion. Biochem J 307: 93–98, 1995

    Google Scholar 

  187. Griffiths EJ, Halestrap AP: Protection by Cyclosporin A of ischemia/reperfusion-induced damage in isolated rat hearts. J Mol Cell Cardiol 25: 1461–1469, 1993

    Google Scholar 

  188. Halestrap AP, Connern CP, Griffiths EJ, Kerr PM: Cyclosporin A binding to mitochondrial cyclophilin inhibits the permeability transition pore and protects hearts from ischaemia/reperfusion injury. Mol Cell Biochem 174: 167–172, 1997

    Google Scholar 

  189. Bossy-Wetzel E, Newmeyer DD, Green DR: Mitochondrial cytochrome c release in apoptosis occurs upstream of DEVD-specific caspase activation and independently of mitochondrial transmembrane depolarization. EMBO J 17: 37–49, 1998

    Google Scholar 

  190. Wang BY, Ho HK, Lin PS, Schwarzacher SP, Pollman MJ, Gibbons GH, Tsao PS, Cooke JP: Regression of atherosclerosis: Role of nitric oxide and apoptosis. Circulation 99: 1236–1241, 1999

    CAS  PubMed  Google Scholar 

  191. Yeh CH, Lin YM, Wu YC, Wang YC, Lin PJ: Nitric oxide attenuates cardiomyocytic apoptosis via diminished mitochondrial complex I up-regulation from cardiac ischemia-reperfusion injury under cardiopulmonary bypass. J Thorac Cardiovasc Surg 128: 180–188, 2004

    Google Scholar 

  192. Chinnaiyan AM, Tepper CG, Seldin MF, O’Rourke K, Kischkel FC, Hellbardt S, Krammer PH, Peter ME, Dixit VM: FADD/MORT1 is a common mediator of CD95 (Fas/APO-1) and tumor necrosis factor receptor-induced apoptosis. J Biol Chem 271: 4961–4965, 1996

    Google Scholar 

  193. Zhang J, Alter N, Reed JC, Borner C, Obeid LM, Hannun YA: Bcl-2 interrupts the ceramide-mediated pathway of cell death. Proc Natl Acad Sci USA 93: 5325–5328, 1996

    Google Scholar 

  194. Moraru II, Popescu LM, Maulik N, Liu X, Das DK: Phospholipase D signaling in ischemic heart. Biochim Biophys Acta 1139: 148–154, 1992

    Google Scholar 

  195. Fadok VA, Voelker DR, Campbell PA, Cohen JJ, Bratton DL, Henson PM: Exposure of phosphatidylserine on the surface of apoptotic lymphocytes triggers specific recognition and removal by macrophages. J Immunol 148: 2207–2216, 1992

    Google Scholar 

  196. Martin SJ, Reutelingsperger CP, McGahon AJ, Rader JA, van Schie RC, LaFace DM, Green DR: Early redistribution of plasma membrane phosphatidylserine is a general feature of apoptosis regardless of the initiating stimulus: Inhibition by overexpression of Bcl-2 and Ab1. J Exp Med 182: 1545–1556, 1995

    Article  CAS  PubMed  Google Scholar 

  197. van Heerde WL, Robert-Offerman S, Dumont E, Hofstra L, Doevendans PA, Smits JF, Daemen MJ, Reutelingsperger CP: Markers of apoptosis in cardiovascular tissues: Focus on Annexin V. Cardiovasc Res 45: 549–559, 2000

    Google Scholar 

  198. Dumont EA, Reutelingsperger CP, Smits JF, Daemen MJ, Doevendans PA, Wellens HJ, Hofstra L: Real-time imaging of apoptotic cell-membrane changes at the single-cell level in the beating murine heart. Nat Med 7: 1352–1355, 2001

    Google Scholar 

  199. Andree HA, Reutelingsperger CP, Hauptmann R, Hemker HC, Hermens WT, Willems GM: Binding of vascular anticoagulant alpha (VAC alpha) to planar phospholipid bilayers. J Biol Chem 265: 4923–4928, 1990

    Google Scholar 

  200. van Engeland M, Ramaekers FC, Schutte B, Reutelingsperger CP: A novel assay to measure loss of plasma membrane asymmetry during apoptosis of adherent cells in culture. Cytometry 24: 131–139, 1996

    Google Scholar 

  201. van den Eijnde SM, Boshart L, Reutelingsperger CMP, De Zeeuw CI, Vermeij-Keers C: Phosphatidylserine plasma membrane asymmetry in vivo: A pancellular phenomenon which alters during apoptosis. Cell Death Diff 4: 311–316, 1997

    Google Scholar 

  202. Song G, Campost B, Wagoner LE, Dedman JR, Walsh RA: Altered cardiac annexin mRNA and protein levels in the left ventricle of patients with end-stage heart failure. J Mol Cell Cardiol 30: 443–451, 1998

    Google Scholar 

  203. Dumont EA, Hofstra L, van Heerde WL, van den Eijnde S, Doevendans PA, DeMuinck E, Daemen MA, Smits JF, Frederik P, Wellens HJ, Daemen MJ, Reutelingsperger CP: Cardiomyocyte death induced by myocardial ischaemia and reperfusion. Measurement with recombinant human Annexin-V in a mouse model. Circulation 102: 1564–1568, 2000

    Google Scholar 

  204. Ichinose M, Yonemochi H, Sato T, Saikawa T: Diazoxide triggers cardioprotection against apoptosis induced by oxidative stress. Am J Physiol Heart Circ Physiol 284: H2235–H2241, 2003

    Google Scholar 

  205. Narayan P, Mentzer RM Jr, Lasley RD: Annexin V staining during reperfusion detects cardiomyocytes with unique properties. Am J Physiol Heart Circ Physiol 281: H1931–H1937, 2001

    Google Scholar 

  206. van den Eijnde SM, Luijsterburg AJ, Boshart L, De Zeeuw CI, van Dierendonck JH, Reutelingsperger CP, Vermeij-Keers C: In situ detection of apoptosis during embryogenesis with annexin V: From whole mount to ultrastructure. Cytometry 29: 313–320, 1997

    Google Scholar 

  207. Narula J, Acio ER, Narula N, Samuels LE, Fyfe B, Wood D, Fitzpatrick JM, Raghunath PN, Tomaszewski JE, Kelly C, Steinmetz N, Green A, Tait JF, Leppo J, Blankenberg FG, Jain D, Strauss HW: Annexin-V imaging for noninvasive detection of cardiac allograft rejection. Nat Med 7: 1347–1352, 2001

    Google Scholar 

  208. Thimister PW, Hofstra L, Liem IH, Boersma HH, Kemerink G, Reutelingsperger CP, Heidendal GA: In vivo detection of cell death in the area at risk in acute myocardial infarction. J Nucl Med 44: 391–396, 2003

    Google Scholar 

  209. Narula J, Strauss HW: Invited commentary: P.S.* I love you: Implications of phosphatidyl serine (PS) reversal in acute ischemic syndromes. J Nucl Med 44: 397–399, 2003

    Google Scholar 

  210. Lazebnik YA, Kaufmann SH, Desnoyers S, Poirier GG, Earnshaw WC: Cleavage of poly(ADP-ribose) polymerase by a proteinase with properties like ICE. Nature 371: 346–347, 1994

    Google Scholar 

  211. Reimer KA, Jennings RB: The ‘wavefront phenomenon’ of myocardial ischemic cell death. II: Transmural progression of necrosis within the framework of ischemic bed size (myocardium at risk) and collateral flow. Lab Invest 40: 633–644, 1979

    Google Scholar 

  212. Jennings RB, Sommers HM, Smyth GA, Flack HA, Linn H: Myocardial necrosis induced by temporary occlusion of a coronary artery in the dog. Arch Pathol 70: 68–78, 1960

    Google Scholar 

  213. Jennings RB, Baum JH, Herdson PB: Fine structural changes in myocardial ischemic injury. Arch Pathol 79: 135–143, 1965

    Google Scholar 

  214. Kloner RA, Ganote CE, Whalen DA Jr, Jennings RB: Effect of a transient period of ischemia on myocardial cells. II. Fine structure during the first few minutes of reflow. Am J Pathol 74: 399–422, 1974

    Google Scholar 

  215. Jugdutt BI: Recruitment of ventricular function with adjunctive nitrate therapy after late reperfusion. In: P.K. Singal, R.G. Beamish, N.S. Dhalla (eds). Mechanisms of Heart Failure. Kluwer Academic Publishers, Boston, 1995, pp 425–432

    Google Scholar 

  216. Jugdutt BI, Menon V: AT2 receptor and apoptosis during AT1 receptor blockade in reperfused myocardial infarction in the rat. Mol and Cell Biochem 262: 203–214, 2004

    Google Scholar 

  217. Zak R: Development and proliferative capacity of cardiac muscle cells. Circ Res 35(Suppl II): II-17–II-26, 1974

    Google Scholar 

  218. Olivetti G, Melissari M, Balbi T, Quaini F, Sonnenblick EH, Anversa P: Myocyte nuclear and possible cellular hyperplasia contribute to ventricular remodeling in the hypertrophic senescent heart in humans. Am Coll Cardiol 24: 140–149, 1994

    Google Scholar 

  219. Anversa P, Kajstura J: Ventricular myocytes are not terminally differentiated in the adult mammalian heart. Circ Res 83: 1–14, 1998

    CAS  PubMed  Google Scholar 

  220. Nadal-Ginard B, Kajstura J, Anversa P, Leri A: A matter of life and death: Cardiac myocyte apoptosis and regeneration. J Clin Invest 111: 1457–1459, 2003

    Google Scholar 

  221. Buerke M, Murohara T, Skurk C, Nuss C, Tomaselli K, Lefer AM: Cardioprotective effect of insulin-like growth factor I in myocardial ischemia followed by reperfusion. Proc Natl Acad Sci USA 92: 8031–8035, 1995

    Google Scholar 

  222. Narula J, Pandey P, Arbustini E, Haider N, Narula N, Kolodgie FD, Dal Bello B, Semigran MJ, Bielsa-Masdeu A, Dec GW, Israels S, Ballester M, Virmani R, Saxena S, Kharbanda S: Apoptosis in heart failure: Release of cytochrome c from mitochondria and activation of caspase-3 in human cardiomyopathy. Proc Natl Acad Sci USA 96: 8144–8149, 1999

    Google Scholar 

  223. Baldi A, Abbate A, Bussani R, Patti G, Melfi R, Angelini A, Dobrina A, Rossiello R, Silvestri F, Baldi F, Di Sciascio G: Apoptosis and post-infarction left ventricular remodeling. J Mol Cell Cardiol 34: 165–174, 2002

    Google Scholar 

  224. Kajstura J, Pertoldi B, Leri A, Beltrami C-A, Deptala A, Darzynkiewicz Z, Anversa P: Telomere shortening is an in vivo marker of myocyte replication and aging. Am J Pathol 156: 813–820, 2000

    Google Scholar 

  225. Olivetti G, Quaini F, Lagrasta C, Ricci R, Tiberti G, Capasso JM, Anversa P: Myocyte cellular hypertrophy and hyperplasia contribute to ventricular wall remodeling in anemia-induced cardiac hypertrophy in rats. Am J Pathol 141: 227–239, 1992

    Google Scholar 

  226. Jackson KA, Majka SM, Wang H, Pocius J, Hartley CJ, Majesky MW, Entman ML, Michel LH, Hirschi KK, Goodell MA: Regeneration of ischemic cardiac muscle and vascular endothelium by adult stem cells. J Clin Invest 107: 1395–1402, 2001

    Google Scholar 

  227. Beltrami AP, Barlucchi L, Torella D, Baker M, Limana F, Chimenti S, Kasahara H, Rota M, Musso E, Urbanek K, Leri A, Kajstura J, Nadal-Ginard B, Anversa P: Adult cardiac stem cells are multipotent and support myocardial regeneration. Cell 114: 763–776, 2003

    Article  Google Scholar 

  228. Oh H, Bradfute SB, Gallardo TD, Nakamura T, Gaussin V, Mishina Y, Pocius J, Michael LH, Behringer RR, Garry DJ, Entman ML, Schneider MD: Cardiac progenitor cells from adult myocardium; homing, differentiation, and fusion after infarction. Proc Natl Acad Sci USA 100: 12313–12318, 2003

    Google Scholar 

  229. Kehat I, Kenyagin-Karsenti D, Snir M, Segev H, Amit M, Gepstein A, Livne E, Binah O, Itskovitz-Eldor J, Gepstein L: Human embryonic stem cells can differentiate into myocytes with structural and functional properties of cardiomyocytes. J Clin Invest 108: 407–414, 2001

    Google Scholar 

  230. Olivetti G, Capasso JM, Sonnenblick EH, Anversa P: Side-to-side slippage of myocytes participates in ventricular wall remodeling acutely after myocardial infarction in rats. Circ Res 67: 23–34, 1990

    Google Scholar 

  231. Anversa P, Palackal T, Sonnenblick EH, Olivetti G, Meggs LG, Capasso JM: Myocyte cell loss and myocyte cellular hyperplasia in the hypertrophied aging rat heart. Circ Res 67: 871–885, 1990

    Google Scholar 

  232. Olivetti G, Capasso JM, Meggs LG, Sonnenblick EH, Anversa P: Cellular basis of chronic ventricular remodeling after myocardial infarction in rats. Circ Res 68: 856–869, 1991

    Google Scholar 

  233. Jennings RB, Ganote CE: Mitochondrial structure and function in acute myocardial ischemic injury. Circ Res 38: I80–I91, 1976

    Google Scholar 

  234. Jennings RB, Reimer KA: Factors involved in salvaging ischemic myocardium: Effect of reperfusion of arterial blood. Circulation 68: I25–I36, 1983

    Google Scholar 

  235. Brierley GP, Baysal K, Jung DW: Cation transport systems in mitochondria: Na+ and K+ uniports and exchangers. J Bioenerg Biomembr 26: 519–526, 1994

    Google Scholar 

  236. Allbritton NL, Verret CR, Wolley RC, Eisen HN: Calcium ion concentrations and DNA fragmentation in target cell destruction by murine cloned cytotoxic T lymphocytes. J Exp Med 167: 514–527, 1988

    Google Scholar 

  237. Ray SD, Kamendulis LM, Gurule MW, Yorkin RD, Corcoran GB: Ca2+ antagonists inhibit DNA fragmentation and toxic cell death induced by acetaminophen. FASEB J 7: 453–463, 1993

    Google Scholar 

  238. Herdson PB, Kaltenbach JP, Jennings RB: Fine structural and biochemical changes in dog myocardium during autolysis. Am J Pathol 57: 539–557, 1969

    Google Scholar 

  239. Sperandio S, de Belle I, Bredesen DE: An alternative, nonapoptotic form of programmed cell death. Proc Natl Acad Sci USA 97: 14376–14381, 2000

    Google Scholar 

  240. Narula J, Arbustini E, Chandrashekhar Y, Schwaiger M: Apoptosis and the systolic dysfunction in congestive heart failure. Story of apoptosis interruptus and zombie myocytes. Cardiol Clin 19: 113–126, 2001

    Google Scholar 

  241. Kockx MM, Herman AG: Apoptosis in atherosclerosis: Beneficial or detrimental? Cardiovasc Res 45: 736–746, 2000

    Article  CAS  PubMed  Google Scholar 

  242. Isner JM, Kearney M, Bortman S, Passeri J: Apoptosis in human atherosclerosis and restenosis. Circulation 91: 2703–2711, 1995

    Google Scholar 

  243. Kockx MM, Cambier BA, Bortier HE, DeMeyer GR, Declercq SC, VanCauwelaert PA, Bultinck J: Foam cell replication and smooth muscle cell apoptosis in human saphenous vein grafts. Histopathology 25: 365–371, 1994

    Google Scholar 

  244. Hardwick SJ, Hegyi L, Clare K, Law NS, Carpenter KL, Mitchinson MJ, Skepper JN: Apoptosis in human monocyte-macrophages exposed to oxidized low density lipoprotein. J Pathol 179: 294–302, 1996

    Google Scholar 

  245. Geng YJ, Henderson LE, Levesque EB, Muszynski M, Libby P: Fas is expressed in human atherosclerotic intima and promotes apoptosis of cytokine-primed human vascular smooth muscle cells. Arterioscler Thromb Vasc Biol 17: 2200–2208, 1997

    Google Scholar 

  246. Davies MJ, Richardson PD, Woolf N, Katz DR, Mann J: Risk of thrombosis in human atherosclerotic plaques: Role of extracellular lipid, macrophage, and smooth muscle cell content. Br Heart J 69: 377–381, 1993

    Google Scholar 

  247. Kockx MM, De Meyer GR, Muhring J, Bult H, Bultinck J, Herman AG: Distribution of cell replication and apoptosis in atherosclerotic plaques of cholesterol-fed rabbits. Atherosclerosis 120: 115–124, 1996

    Google Scholar 

  248. Crisby M, Kallin B, Thyberg J, Zhivotovsky B, Orrenius S, Kostulas V, Nilsson J: Cell death in human atherosclerotic plaques involves both oncosis and apoptosis. Atherosclerosis 130: 17–27, 1997

    Google Scholar 

  249. Kolodgie FD, Petrov A, Virmani R, Narula N, Verjans JW, Weber DK, Hartung D, Steinmetz N, Vanderheyden JL, Vannan MA, Gold HK, Reutelingsperger CP, Hofstra L, Narula J: Targeting of apoptotic macrophages and experimental atheroma with radiolabeled annexin V. A technique with potential for noninvasive imaging of vulnerable plaque. Circulation 108: 3134–3139, 2003

    Google Scholar 

  250. Candipan RC, Wang B-Y, Buitrago R, Tsao PS, Cooke JP: Regression or progression: Dependency on vascular nitric oxide. Arterioscler Thromb Vasc Biol 16: 44–50, 1996

    Google Scholar 

  251. Flynn PD, Byrne CD, Baglin TP, Weissberg PL, Bennett MR: Thrombin generation by apoptotic vascular smooth muscle cells. Blood 89: 4378–4384, 1997

    Google Scholar 

  252. Steg PG, Tahlil O, Aubailly N, Caillaud JM, Dedieu JF, Berthelot K, Le Roux A, Feldman L, Perricaudet M, Denefle P, Branellec D: Reduction of restenosis after angioplasty in an atheromatous rabbit model by suicide gene therapy. Circulation 96: 408–411, 1997

    Google Scholar 

  253. Sata M, Perlman H, Muruve DA, Silver M, Ikebe M, Libermann TA, Oettgen P, Walsh K: Fas ligand gene transfer to the vessel wall inhibits neointima formation and overrides the adenovirus-mediated T cell response. Proc Natl Acad Sci USA 95: 1213–1217, 1998

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bodh I. Jugdutt MD, Dr..

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jugdutt, B.I., Idikio, H.A. Apoptosis and oncosis in acute coronary syndromes: Assessment and implications. Mol Cell Biochem 270, 177–200 (2005). https://doi.org/10.1007/s11010-005-4507-9

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-005-4507-9

Key words

Navigation