Skip to main content
Log in

Maps on positive definite operators preserving the quantum \(\chi _\alpha ^2\)-divergence

  • Published:
Letters in Mathematical Physics Aims and scope Submit manuscript

Abstract

We describe the structure of all bijective maps on the cone of positive definite operators acting on a finite and at least two-dimensional complex Hilbert space which preserve the quantum \(\chi _\alpha ^2\)-divergence for some \(\alpha \in [0,1]\). We prove that any such transformation is necessarily implemented by either a unitary or an antiunitary operator. Similar results concerning maps on the cone of positive semidefinite operators as well as on the set of all density operators are also derived.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. The reviewer of the paper kindly called our attention to the fact that an inequality stronger than (3) could be deduced using the techniques of Lemma 5 in [16].

  2. The reviewer of the paper pointed out that the convexity part of this statement follows also from a celebrated result of Lieb, see Corollary 2.1 in Convex trace functions and the Wigner–Yanase–Dyson conjecture, Advances in Math. 11 (1973), 267–288.

References

  1. Carlen, E.: Trace inequalities and quantum entropy: an introductory course. Contemp. Math. 529, 73–140 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  2. Gehér, G.P.: An elementary proof for the non-bijective version of Wigner’s theorem. Phys. Lett. A 378, 2054–2057 (2014)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  3. Hansen, F.: Convexity of quantum \(\chi ^2\)-divergence. Proc. Natl. Acad. Sci. USA 108, 10078–10080 (2011)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  4. Hiai, F., Mosonyi, M., Petz, D., Bény, C.: Quantum \(f\)-divergences and error correction. Rev. Math. Phys. 23, 691–747 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  5. Hiai, F., Petz, D.: From quasi-entropy to various quantum information quantities. Publ. Res. Inst. Math. Sci. 48, 525–542 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  6. Jenčová, A.: Reversibility conditions for quantum operations. Rev. Math. Phys. 24, 1250016 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  7. Molnár, L.: Selected Preserver Problems on Algebraic Structures of Linear Operators and On Function Spaces, Lecture Notes in Mathematics, vol. 1895, 236 p, Springer, Berlin, Heidelberg (2007)

  8. Molnár, L.: Maps on states preserving the relative entropy. J. Math. Phys. 49, 032114 (2008)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  9. Molnár, L.: Maps on the positive definite cone of a \(C^*\)-algebra preserving certain quasi-entropies. J. Math. Anal. Appl. 447, 206–221 (2017)

    Article  MATH  MathSciNet  Google Scholar 

  10. Molnár, L., Nagy, G.: Isometries and relative entropy preserving maps on density operators. Linear Multilinear Algebra 60, 93–108 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  11. Molnár, L., Nagy, G., Szokol, P.: Maps on density operators preserving quantum \(f\)-divergences. Quantum Inf. Process. 12, 2309–2323 (2013)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  12. Molnár, L., Pitrik, J., Virosztek, D.: Maps on positive definite matrices preserving Bregman and Jensen divergences. Linear Algebra Appl. 495, 174–189 (2016)

    Article  MATH  MathSciNet  Google Scholar 

  13. Molnár, L., Szokol, P.: Maps on states preserving the relative entropy II. Linear Algebra Appl. 432, 3343–3350 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  14. Petz, D., Ghinea, C.: Introduction to quantum Fisher information. In: Rebolledo, R., Orszag, M. (eds.) Quantum Probability and Related Topics, QP-PQ: Quantum Probability and White Noise Analysis, vol. 27, pp. 261–281. World Scientific Publishing, Hackensack (2011)

  15. Temme, K., Kastoryano, M.J., Ruskai, M.B., Wolf, M.M., Verstraete, F.: The \(\chi ^2\)-divergence and mixing times of quantum Markov processes. J. Math. Phys. 51, 122201 (2010)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  16. Temme, K., Verstraete, F.: Quantum chi-squared and goodness of fit testing. J. Math. Phys. 56, 012202 (2015)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  17. Virosztek, D.: Maps on quantum states preserving Bregman and Jensen divergences. Lett. Math. Phys. 106, 1217–1234 (2016)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  18. Virosztek, D.: Quantum f-divergence preserving maps on positive semidefinite operators acting on finite dimensional Hilbert spaces. Linear Algebra Appl. 501, 242–253 (2016)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Acknowledgements

Gy. P. Gehér and L. Molnár were supported by the “Lendület” Program (LP2012-46/2012) of the Hungarian Academy of Sciences and by the National Research, Development and Innovation Office - NKFIH, Grant No. K115383. D. Virosztek was supported by the “Lendület” Program (LP2012-46/2012) of the Hungarian Academy of Sciences, by the National Research, Development and Innovation Office - NKFIH, Grant No. K104206, and by the “For the Young Talents of the Nation” scholarship program (NTP-EFÖ-P-15-0481) of the Hungarian State. The project was also supported by the joint venture of Taiwan and Hungary MOST-HAS, Grant No. 104-2911-1-110-508.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lajos Molnár.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, HY., Gehér, G.P., Liu, CN. et al. Maps on positive definite operators preserving the quantum \(\chi _\alpha ^2\)-divergence. Lett Math Phys 107, 2267–2290 (2017). https://doi.org/10.1007/s11005-017-0989-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11005-017-0989-0

Keywords

Mathematics Subject Classification

Navigation