Skip to main content
Log in

On Endomorphisms of Quantum Tensor Space

  • Published:
Letters in Mathematical Physics Aims and scope Submit manuscript

Abstract

We give a presentation of the endomorphism algebra \({\rm End}_{\mathcal {U}_{q}(\mathfrak {sl}_{2})}(V^{\otimes r})\) , where V is the three-dimensional irreducible module for quantum \({\mathfrak {sl}_2}\) over the function field \({\mathbb {C}(q^{\frac{1}{2}})}\) . This will be as a quotient of the Birman–Wenzl–Murakami algebra BMW r (q) : =  BMW r (q −4, q 2 − q −2) by an ideal generated by a single idempotent Φ q . Our presentation is in analogy with the case where V is replaced by the two-dimensional irreducible \({\mathcal {U}_q(\mathfrak {sl}_{2})}\) -module, the BMW algebra is replaced by the Hecke algebra H r (q) of type A r-1, Φ q is replaced by the quantum alternator in H 3(q), and the endomorphism algebra is the classical realisation of the Temperley–Lieb algebra on tensor space. In particular, we show that all relations among the endomorphisms defined by the R-matrices on \({V^{\otimes r}}\) are consequences of relations among the three R-matrices acting on \({V^{\otimes 4}}\). The proof makes extensive use of the theory of cellular algebras. Potential applications include the decomposition of tensor powers when q is a root of unity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Birman J., Wenzl H.: Braids, link polynomials and a new algebra. Trans. Am. Math. Soc. 313, 249–273 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  2. Brauer R.: On algebras which are connected with the semisimple continuous groups. Ann. Math. (2) 38, 857–872 (1937)

    Article  MathSciNet  Google Scholar 

  3. Doran W.F. IV, Wales D.B., Hanlon P.J.: On the semisimplicity of the Brauer centralizer algebras. J. Algebra 211, 647–685 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  4. Drinfel’d, V.G.: Quantum groups. In: Proceedings of the International Congress of Mathematicians (Berkeley, Calif., 1986), vols. 1, 2, pp. 798–820. American Mathematical Society, Providence (1987)

  5. Du J., Parshall B., Scott L.: Quantum Weyl reciprocity and tilting modules. Commun. Math. Phys. 195, 321–352 (1998)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  6. Graham J., Lehrer G.I.: Cellular algebras. Invent. Math. 123, 1–34 (1996)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  7. Graham J.J., Lehrer G.I.: Diagram algebras, Hecke algebras and decomposition numbers at roots of unity. Ann. Sci. École Norm. Sup. 36, 479–524 (2003)

    MATH  MathSciNet  Google Scholar 

  8. Graham, J.J., Lehrer, G.I.: Cellular algebras and diagram algebras in representation theory. Representation Theory of Algebraic Groups and Quantum Groups. Advanced Studies in Pure Mathematics, vol. 40, pp. 141–173. Mathematical Society of Japan, Tokyo (2004)

  9. Green J.A.: Polynomial representations of GL n . Lecture Notes in Mathematics, vol. 830. Springer, Berlin (1980)

    Google Scholar 

  10. Hanlon P., Wales D.: On the decomposition of Brauer’s centralizer algebras. J. Algebra 121, 409–445 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  11. Hilton P., Wu Y.C.: A course in modern algebra. Pure and Applied Mathematics. Wiley, New York (1974)

    Google Scholar 

  12. Lehrer G.I., Zhang R.B.: Strongly multiplicity free modules for Lie algebras and quantum groups. J. Algebra 306, 138–174 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  13. Lehrer, G.I., Zhang, R.B.: A Temperley–Lieb analogue for the BMW algebra. Representation Theory of Algebraic Groups and Quantum Groups. Progress in Mathematics. Birkhäuser, Basel (2009, in press). arXiv:0806.0687v1[math.RT]

  14. Lusztig G.: Quantum deformations of certain simple modules over enveloping algebras. Adv. Math. 70(2), 237–249 (1988)

    Article  MATH  MathSciNet  Google Scholar 

  15. Lusztig G.: Introduction to quantum groups. Progress in Mathematics, vol. 110. Birkhäuser, Boston (1993)

    Google Scholar 

  16. Martin P.: The structure of the partition algebras. J. Algebra 183, 319–358 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  17. Rui H., Si M.: A criterion on the semisimple Brauer algebras. II. J. Comb. Theory Ser. A 113, 1199–1203 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  18. Weyl H.: The Classical Groups. Their Invariants and Representations. Princeton University Press, Princeton (1939)

    Google Scholar 

  19. Xi C.: On the quasi-heredity of Birman–Wenzl algebras. Adv. Math. 154(2), 280–298 (2000)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gustav Isaac Lehrer.

Additional information

This study was partially supported by the Australian Research Council.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lehrer, G.I., Zhang, R. On Endomorphisms of Quantum Tensor Space. Lett Math Phys 86, 209–227 (2008). https://doi.org/10.1007/s11005-008-0284-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11005-008-0284-1

Mathematics Subject Classification (2000)

Keywords

Navigation