Skip to main content
Log in

Electro-viscoelastic performance of a tubular dielectric elastomer actuator

  • Published:
International Journal of Mechanics and Materials in Design Aims and scope Submit manuscript

Abstract

To reveal the electro-viscoelastic performance of a tubular dielectric elastomer actuator, a dissipative model for the actuator is formulated by adopting the nonlinear theory of viscoelastic dielectrics. The actuator is made by rolling a layer of dielectric elastomer membrane into a tube, which is then fixed tightly with two rigid disks at top and bottom edges respectively. Once actuated by internal pressure and voltage, the tube inflates and deforms into an out-of plane shape, undergoing large deformation. To depict the deformation, the non-equilibrium thermodynamics is employed to derive the state equations and the governing equations, and to characterize the dissipative process, a rheological spring-dashpot model is applied to obtaining the kinetic equations. Numerical simulation is conducted by a joint use of the shooting method and the improved Euler method, and the variations of the considered variables and the profiles of the deformed tube are obtained and demonstrated graphically. The effects of the internal pressure, the voltage as well as the aspect ratio of the tube on the performance of the actuator are considered. The results show that for small pressure or small voltage, the actuator can eventually evolve into a stable state, while for large pressure or large voltage, the actuator can’t reach a stable state due to the occurrence of purely mechanical instability or electromechanical instability. As for the aspect ratio, it significantly influences the performance of the actuator. It is hoped that the approach may provide a better understanding of the electro-viscoelastic performance of such actuators and some guidelines in designing such actuators.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • An, L., Wang, F.F., Cheng, S.B., Lu, T.Q., Wang, T.J.: Experimental investigation of the electromechanical phase transition in a dielectric elastomer tube. Smart Mater. Struct. 24, 035006 (2015)

    Article  Google Scholar 

  • Dorfmann, A., Ogden, R.W.: Nonlinear electroelasticity. Acta Mech. 174, 167–183 (2005)

    Article  MATH  Google Scholar 

  • Foo, C.C., Koh, S.J.A., Keplinger, C., Kaltseis, R., Bauer, S., Suo, Z.G.: Performance of dissipative dielectric elastomer generators. J. Appl. Phys. 111, 094107 (2012)

    Article  Google Scholar 

  • Goulbourne, N., Mockenstrum, E., Frecker, M.: A nonlinear model for dielectric elastomer membranes. J. Appl. Mech. 72, 899 (2005)

    Article  MATH  Google Scholar 

  • Gisby, T.A., Xie, S.Q., Calius, E.P., Anderson, I.A.: Leakage current as a predictor of failure in dielectric elastomer actuators. Proc. SPIE 7642, 764213 (2010)

    Article  Google Scholar 

  • Henann, D.L., Chester, S.A., Bertoldi, K.: Modeling of dielectric elastomers: design of actuators and energy harvesting devices. J. Mech. Phys. Solids 61, 2047–2066 (2013)

    Article  MathSciNet  Google Scholar 

  • He, T.H., Cui, L.L., Chen, C., Suo, Z.G.: Nonlinear deformation analysis of a dielectric elastomer membrane–spring system. Smart Mater. Struct. 19, 085017 (2009a)

    Article  Google Scholar 

  • He, T.H., Zhao, X.H., Suo, Z.G.: Dielectric elastomer membranes undergoing inhomogeneous deformation. J. Appl. Phys. 106, 083522 (2009b)

    Article  Google Scholar 

  • He, X.Z., Yong, H.D., Zhou, Y.H.: The characteristics and stability of a dielectric elastomer spherical shell with a thick wall. Smart Mater. Struct. 20, 055016 (2011)

    Article  Google Scholar 

  • Huang, J.S., Li, T.F., Foo, C.C., Zhu, J., Clarke, D.R., Suo, Z.G.: Giant, voltage-actuated deformation of a dielectric elastomer under dead load. Appl. Phys. Lett. 100, 836 (2012)

    Google Scholar 

  • Keplinger, C., Li, T.F., Baumgartner, R., Suo, Z.G., Bauer, S.: Harnessing snap-through instability in soft dielectrics to achieve giant voltage-triggered deformation. Soft Matter 8, 285–288 (2012)

    Article  Google Scholar 

  • Keplinger, C., Kaltenbrunner, M., Arnold, N., Bauer, S.: Röntgen’s electrode-free elastomer actuators without electromechanical pull-in instability. Proc. Natl. Acad. Sci. U.S.A. 107, 4505 (2010)

    Article  Google Scholar 

  • Keplinger, C., Kaltenbrunner, M., Arnold, N., Bauer, S.: Capacitive extensometry for transient strain analysis of dielectric elastomer actuators. Appl. Phys. Lett. 92, 192903 (2008)

    Article  Google Scholar 

  • Kofod, G.: The static actuation of dielectric elastomer actuators: how does pre-stretch improve actuation? J. Phys. D Appl. Phys. 41, 2801–2809 (2008)

    Article  Google Scholar 

  • Kollosche, M., Kofod, G., Suo, Z.G., Zhu, J.: Temporal evolution and instability in a viscoelastic dielectric elastomer. J. Mech. Phys. Solids 76, 47–64 (2015)

    Article  Google Scholar 

  • Koh, S.J.A., Zhao, X.H., Suo, Z.G.: Maximal energy that can be converted by a dielectric elastomer generator. Appl. Phys. Lett. 94, 262902 (2009)

    Article  Google Scholar 

  • Li, T.F., Qu, S.X., Yang, W.: Energy harvesting of dielectric elastomer generators concerning inhomogeneous fields and viscoelastic deformation. J. Appl. Phys. 112, 034119 (2012)

    Article  Google Scholar 

  • Lu, T.Q., Cai, S.Q., Wang, H.M., Suo, Z.G.: Computational model of deformable lenses actuated by dielectric elastomers. J. Appl. Phys. 114, 104104 (2013)

    Article  Google Scholar 

  • Lu, T.Q., Foo, C.C., Huang, J.S., Zhu, J., Suo, Z.G.: Highly deformable actuators made of dielectric elastomers clamped by rigid rings. J. Appl. Phys. 115, 184105 (2014)

    Article  Google Scholar 

  • McMeeking, R.M., Landis, C.M.: Electrostatic forces and stored energy for deformable dielectric materials. J. Appl. Mech. 72, 581–590 (2005)

    Article  MATH  Google Scholar 

  • Plante, J., Dubowsky, S.: Large-scale failure modes of dielectric elastomer actuators. Int. J. Solids Struct. 43, 7727–7751 (2006)

    Article  MATH  Google Scholar 

  • Pelrine, R., Kornbluh, R., Pei, Q.B.: High-speed electrically actuated elastomers with strain greater than 100%. Science 287, 836–839 (2000)

    Article  Google Scholar 

  • Suo, Z.G., Zhao, X.H., Greene, W.H.: A nonlinear field theory of deformable dielectrics. J. Mech. Phys. Solids 56, 467–486 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  • Suo, Z.G.: Theory of dielectric elastomers. Acta Mech. Solida Sin. 23, 549–578 (2010)

    Article  Google Scholar 

  • Tavakol, B., Holmes, D.P.: Voltage-induced buckling of dielectric films using fluid electrodes. Appl. Phys. Lett. 108, 112901 (2016)

    Article  Google Scholar 

  • Wang, B., Wang, Z.G., He, T.H.: Investigation on the viscoelastic behaviors of a circular dielectric elastomer membrane undergoing large deformation. AIP Adv. 6, 125127 (2016a)

    Article  Google Scholar 

  • Wang, H.M., Cai, S.Q., Carpi, F., Suo, Z.G.: Computational model of hydrostatically coupled dielectric elastomer actuators. J. Appl. Mech. 79, 031008 (2012)

    Article  Google Scholar 

  • Wang, H.M., Lei, M., Cai, S.Q.: Viscoelastic deformation of a dielectric elastomer membrane subject to electromechanical loads. J. Appl. Phys. 113, 213508 (2013)

    Article  Google Scholar 

  • Wang, S., Decker, M., Henann, D.L., Chester, S.A.: Modeling of dielectric viscoelastomers with application to electromechanical instabilities. J. Mech. Phys. Solids 95, 213–229 (2016b)

    Article  MathSciNet  Google Scholar 

  • Wissler, M., Mazza, E.: Mechanical behavior of an acrylic elastomer used in dielectric elastomer actuators. Sens. Actuat. A Phys. 134, 494–504 (2007)

    Article  Google Scholar 

  • Yu, Z.B., Yuan, W., Brochu, P., Chen, B., Liu, Z.T., Pei, Q.B.: Large-strain, rigid-to-rigid deformation of bistable electroactive polymers. Appl. Phys. Lett. 95, 30 (2009)

    Google Scholar 

  • Zhao, X.H., Suo, Z.G.: Method to analyze electromechanical stability of dielectric elastomers. Appl. Phys. Lett. 91, 061921 (2007)

    Article  Google Scholar 

  • Zhao, X.H., Koh, S.J.A., Suo, Z.G.: Nonequilibrium thermodynamics of dielectric elastomers. Int. J. Appl. Mech. 3, 203–217 (2011)

    Article  Google Scholar 

  • Zhang, J.S., Tang, L.L., Li, B., Wang, Y.J., Chen, H.L.: Modeling of the dynamic characteristic of viscoelastic dielectric elastomer actuators subject to different conditions of mechanical load. J. Appl. Phys. 117, 836 (2015)

    Google Scholar 

  • Zhou, J.Y., Jiang, L.Y., Khayat, R.E.: Viscoelastic effects on frequency tuning of a dielectric elastomer membrane resonator. J. Appl. Phys. 115, 124106 (2014)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (11372123).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tianhu He.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

He, T., Wang, Z. Electro-viscoelastic performance of a tubular dielectric elastomer actuator. Int J Mech Mater Des 15, 199–212 (2019). https://doi.org/10.1007/s10999-018-9408-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10999-018-9408-7

Keywords

Navigation