Skip to main content

Advertisement

Log in

Survival models and health sequences

  • Published:
Lifetime Data Analysis Aims and scope Submit manuscript

Abstract

Survival studies often generate not only a survival time for each patient but also a sequence of health measurements at annual or semi-annual check-ups while the patient remains alive. Such a sequence of random length accompanied by a survival time is called a survival process. Robust health is ordinarily associated with longer survival, so the two parts of a survival process cannot be assumed independent. This paper is concerned with a general technique—reverse alignment—for constructing statistical models for survival processes, here termed revival models. A revival model is a regression model in the sense that it incorporates covariate and treatment effects into both the distribution of survival times and the joint distribution of health outcomes. The revival model also determines a conditional survival distribution given the observed history, which describes how the subsequent survival distribution is determined by the observed progression of health outcomes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Notes

  1. Missing from the latent-variable formulation in Henderson et al. (2000) and Xu and Zeger (2001) is an explicit recognition of the fact that health outcomes are observable only while patients live.

References

  • Albert PS, Shih JH (2010) An approach for jointly modeling multivariate longitudinal measurements and discrete time-to-event data. Ann Appl Stat 4:1517–1532

    Article  MathSciNet  MATH  Google Scholar 

  • Andersen PK, Hansen LH, Keiding N (1991) Assessing the influence of reversible disease indicators on survival. Stat Med 10:1061–1067

    Article  Google Scholar 

  • Chan K, Wang M (2010) Backward estimation of stochastic processes with failure events as time origins. Ann Appl Stat 4:1602–1620

    Article  MathSciNet  MATH  Google Scholar 

  • Clayton DG (1991) A Monte Carlo method for Bayesian inference in frailty models. Biometrics 47:467–485

    Article  Google Scholar 

  • Clifford D, McCullagh P (2006) The regress function. R Newsl 6:6–10

    Google Scholar 

  • Cox DR (1972) Regression models and life tables (with discussion). J R Stat Soc B 34:187–220

    MATH  Google Scholar 

  • Cox DR, Snell EJ (1981) Applied statistics. Chapman and Hall, London

    Book  MATH  Google Scholar 

  • Crowther MJ, Andersson TM, Lambert PC, Abrams KR, Humphreys K (2016) Joint modelling of longitudinal and survival data: incorporating delayed entry and an assessment of model misspecification. Stat Med 35:1193–1209

    Article  MathSciNet  Google Scholar 

  • DeGruttola V, Tu XM (1994) Modeling progression of CD-4 lymphocyte count and its relation to survival time. Biometrics 50:1003–1014

    Article  Google Scholar 

  • Dempsey W, McCullagh P (2017a) Vital variables and survival processes. arXiv:1601.04841

  • Dempsey W, McCullagh P (2017b) Exchangeable markov survival processes and weak continuity of predictive distributions. Electron J Stat 2:5406–5451

    Article  MathSciNet  MATH  Google Scholar 

  • Diggle PJ, Heagerty P, Liang K-Y, Zeger SL (2002) Analysis of longitudinal data. Oxford Science Publications, Oxford

    MATH  Google Scholar 

  • Diggle PJ, Farewell D, Henderson R (2007) Analysis of longitudinal data with drop-out: objectives, assumptions and a proposal (with discussion). Appl Stat 56:499–550

    Google Scholar 

  • Diggle PJ, Sousa I, Chetwynd A (2008) Joint modeling of repeated measurements and tome-to-event outcomes: the fourth Armitage lecture. Stat Med 27:2981–2998

    Article  MathSciNet  Google Scholar 

  • Diggle P, Menezes R, Su T-L (2010) Geostatistical inference under preferential sampling (with discussion). Appl Stat 59:191–232

    MathSciNet  Google Scholar 

  • Ding J, Wang JL (2008) Modeling longitudinal data with nonparametric multiplicative random effects jointly with survival data. Biometrics 64:546–556

    Article  MathSciNet  MATH  Google Scholar 

  • Farewell D, Henderson R (2010) Longitudinal perspectives on event history analysis. Lifetime Data Anal 6:102–117

    Article  MathSciNet  MATH  Google Scholar 

  • Faucett CL, Thomas DC (1996) Simultaneously modeling censored survival data and repeatedly measured covariates: a Gibbs sampling approach. Stat Med 15:1663–1685

    Article  Google Scholar 

  • Fieuws S, Verbeke G, Maes B, Vanrenterghem Y (2008) Predicting renal graft failure using multivariate longitudinal profiles. Biostatistics 9:419–431

    Article  MATH  Google Scholar 

  • Fitzmaurice G, Davidian M, Verbeke G, Molenberghs G (2009) Longitudinal data analysis. Chapman and Hall, London

    MATH  Google Scholar 

  • Fitzmaurice GM, Laird NM, Ware JH (2011) Applied longitudinal data analysis, 2nd edn. Wiley, New York

    MATH  Google Scholar 

  • Guo X, Carlin B (2004) Separate and joint modeling of longitudinal and event time data using standard computer packages. Am Stat 58:1–10

    Article  MathSciNet  Google Scholar 

  • Henderson R, Diggle P, Dobson A (2000) Joint modeling of longitudinal measurements and event time data. Biostatistics 1:465–480

    Article  MATH  Google Scholar 

  • Hjort NL (1990) Nonparametric Bayes estimators based on beta processes in models for life history data. Ann Stat 18:1259–1294

    Article  MathSciNet  MATH  Google Scholar 

  • Houwelingen HC (2014) From model building to validation and back: a plea for robustness. Stat Med 33:5223–5238

    Article  MathSciNet  Google Scholar 

  • Hsieh F, Tsen YK, Wang JL (2006) Joint modeling of survival and longitudinal data: likelihood approach revisited. Biometrics 62:1061–1067

    Article  MathSciNet  Google Scholar 

  • Huang CY, Wang MC (2004) Joint modeling and estimation for recurrent event processes and failure time data. J Am Stat Assoc 99:1153–1165

    Article  MathSciNet  MATH  Google Scholar 

  • Isham V, Westcott M (1970) A self-correcting point process. Stoch Process Appl 8:335–347

    Article  MathSciNet  MATH  Google Scholar 

  • Kalbfleisch JD (1978) Nonparametric Bayesian analysis of survival time data. J R Stat Soc B 40:214–221

    MATH  Google Scholar 

  • Kalbfleisch JD, Prentice RL (2002) The statistical analysis of failure time data. Wiley, Hoboken

    Book  MATH  Google Scholar 

  • Kaplan EL, Meier P (1958) Nonparametric estimation from incomplete observations. J Amer Stat Assoc 53:457–481

    Article  MathSciNet  MATH  Google Scholar 

  • Kong S, Nan B, Kalbfleisch JD, Saran R, Hirth R (2017) Conditional modeling of longitudinal data with terminal event. J Am Stat Assoc 0:1–12

    Google Scholar 

  • Kurland BF, Johnson LL, Egleston BL, Diehr PH (2009) Longitudinal data with follow-up truncated by death: match the analysis method to the research aims. Stat Sci 24:211–222

    Article  MathSciNet  MATH  Google Scholar 

  • Lagakos SW (1976) A stochastic model for censored-survival data in the presence of an auxiliary variable. Biometrics 32:551–559

    Article  MATH  Google Scholar 

  • Laird N (1996) Longitudinal panel data: an overview of current methodology. In: Cox DR, Hinkley DV, Barndorff-Nielsen OE (eds) Time series models in econometrics, finance and other fields, Monographs on statistics and applied probability, vol 65. Chapman and Hall, London

    Google Scholar 

  • Li L, Hu B, Greene T (2009) A semiparametric joint model for longitudinal and survival data with application to hemodialysis study. Biometrics 65:737–745

    Article  MathSciNet  MATH  Google Scholar 

  • Li Z, Tosteson TD, Bakitas M (2013) Joint modeling quality of life and survival using a terminal decline model in palliative care studies. Stat Med 32:1394–1406

    Article  MathSciNet  Google Scholar 

  • Li Z, Frost HR, Tosteson TD, Liu L, Lyons K, Chen H, Cole B, Currow D, Bakitas M (2017) A semiparametric joint model for terminal trend of quality of life and survival in palliative care research. Stat Med 36:4692–4704

    Article  MathSciNet  Google Scholar 

  • Liestøl K, Andersen PK (2002) Updating of covariates and choice of time origin in survival analysis: problems with vaguely defined disease states. Stat Med 21:3701–3714

    Article  Google Scholar 

  • Little RJA (1993) Pattern-mixture models for multivariate incomplete data. J Am Stat Assoc 88:125–134

    MATH  Google Scholar 

  • McCullagh P (2008) Sampling bias and logistic models (with discussion). J R Stat Soc B 70:643–677

    Article  MathSciNet  MATH  Google Scholar 

  • Rizopoulos D (2010) JM: an R package for the joint modeling of longitudinal and time-to-event data. J Stat Softw 35:1–33

    Article  Google Scholar 

  • Rizopoulos D (2012) Joint models for longitudinal and time-to-event data. Chapman and Hall, London

    Book  MATH  Google Scholar 

  • Schaubel DE, Zhang M (2010) Estimating treatment effects on the marginal recurrent event mean in the presence of a terminating event. Lifetime Data Anal 16:451–477

    Article  MathSciNet  MATH  Google Scholar 

  • Sweeting MJ, Thompson SG (2011) Joint modeling of longitudinal and time-to-event data with application to predicting abdominal aortic aneurysm growth and rupture. Biom J 53:750–763

    Article  MathSciNet  MATH  Google Scholar 

  • Ten Have TR, Miller ME, Reboussin BA, James MK (2000) Mixed effects logistic regression models for longitudinal ordinal functional response data with multiple-cause drop-out from the longitudinal study of aging. Biometrics 56:279–287

    Article  MATH  Google Scholar 

  • Tsiatis AA, Davidian M (2004) Joint modeling of longitudinal and time-to-event data: an overview. Stat Sin 14:809–834

    MathSciNet  MATH  Google Scholar 

  • Tsiatis AA, DeGruttola V, Wulfsohn MS (1995) Modeling the relationship of survival to longitudinal data measured with error: applications to survival and CD4 counts in patients with AIDS. J Am Stat Assoc 90:27–37

    Article  MATH  Google Scholar 

  • van Houwelingen HC, Putter H (2012) Dynamic prediction in clinical survival analysis. Monographs on statistics and applied probability, vol 123. CRC Press, Boca Raton

    MATH  Google Scholar 

  • Welham SJ, Thompson R (1997) Likelihood ratio tests for fixed model terms using residual maximum likelihood. J R Stat Soc B 59:701–714

    Article  MathSciNet  MATH  Google Scholar 

  • Wulfsohn MS, Tsiatis AA (1997) A joint model for survival and longitudinal data measured with error. Biometrics 53:330–339

    Article  MathSciNet  MATH  Google Scholar 

  • Xu J, Zeger SL (2001) Joint analysis of longitudinal data comprising repeated measures and times to events. Appl Stat 50:375–387

    MathSciNet  MATH  Google Scholar 

  • Zeger SL, Liang K-Y (1986) Longitudinal data analysis for discrete and continuous outcomes. Biometrics 42:121–130

    Article  Google Scholar 

  • Zeger SL, Liang K-Y, Albert P (1988) Models for longitudinal data: a generalized estimating equation approach. Biometrics 44:1049–1060

    Article  MathSciNet  MATH  Google Scholar 

  • Zeng D, Lin DY (2009) Semiparametric transformation models with random effects for joint analysis of recurrent and terminal events. Biometrics 65:746–752

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Walter Dempsey.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 227 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dempsey, W., McCullagh, P. Survival models and health sequences. Lifetime Data Anal 24, 550–584 (2018). https://doi.org/10.1007/s10985-018-9424-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10985-018-9424-9

Keywords

Navigation