Skip to main content

Advertisement

Log in

Intraspecific body size increases with habitat fragmentation in wild bee pollinators

  • Research Article
  • Published:
Landscape Ecology Aims and scope Submit manuscript

Abstract

Context

In modern agricultural landscapes, fragmentation of partial habitats is a significant filter for multi-habitat users, reducing local taxonomic and functional diversity. There is compelling evidence that small species are more susceptible than large species. The impact of habitat fragmentation on intraspecific body-size distribution, however, is yet unexplored.

Objectives

We tested habitat fragmentation, a major driver of pollinator loss, for its impact on intraspecific body-size distributions of solitary wild-bee species. Subsequently, we tested individual body size for its impact on pollination services.

Methods

We sampled 1272 individuals of the four most common Andrena wild bee species in 22 newly established flowering fields (0.21–0.41 ha) in Hessen, Central Germany, over two consecutive years. Study sites were located in a ca. 80 ha landscape context of increasing habitat fragmentation. We analysed the pollen loads of the most abundant species.

Results

Body size within local populations of the two medium-sized bees increased with fragmentation, suggesting intraspecific selection for higher dispersal capacity. Pollen analysis carried out for the most common species revealed that larger individuals visited a significantly smaller plant spectrum. Habitat fragmentation may thus alter pollination services without necessarily affecting species richness or composition.

Conclusions

Systematic body-size variation at the population level thus explains the considerable variability between simple community measures and ecosystem functioning. Filtering processes at the individual level require increased understanding for targeting pollination services under current and future land-use change.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Areco-Gómez G, Ashman T (2014) Heterospecific pollen receipt affects self pollen more than outcross pollen: implications for mixed-mating plants. Ecology 95:2946–2952

    Article  Google Scholar 

  • Berggren A (2005) Effect of propagule size and landscape structure on morphological differentiation and asymmetry in experimentally introduced Roesel’s bush-crickets. Conserv Biol 19:1095–1102

    Article  Google Scholar 

  • Beattie AJ (1971) A technique for the study of insect-borne pollen. Pan-Pac Entomol 47:82

    Google Scholar 

  • Beug H-J (2004) Leitfaden der Pollenbestimmung für Mitteleuropa und angrenzende Gebiete. Verlag Dr. Friedrich Pfeil, München

    Google Scholar 

  • Bollen K, Jackman R (1990) Regression diagnostics: an expository treatment of outliers and influential cases. In: Fox J, Long J (eds) Modern methods of data analysis. Sage Publications, Beverly Hills, pp 257–291

    Google Scholar 

  • Bommarco R, Biesmeijer JC, Meyer B, Potts SG, Pöyry J, Roberts SP, Steffan-Dewenter I, Öckinger E (2010) Dispersal capacity and diet breadth modify the response of wild bees to habitat loss. Proc Roy Soc B-Biol Sci 277:2075–2082

    Article  Google Scholar 

  • Chown SL, Gaston KJ (2010) Body size variation in insects: a macroecological perspective. Biol Rev 85:139–169

    Article  PubMed  Google Scholar 

  • Clough Y, Ekroos J, Báldi A, Batáry P, Bommarco R, Gross N, Holzschuh A, Hopfenmüller S, Knop E, Kuussaari M, Lindborg R (2014) Density of insect-pollinated grassland plants decreases with increasing surrounding land-use intensity. Ecol Lett 17:1168–1177

    Article  PubMed  Google Scholar 

  • Fontaine C, Collin CL, Dajoz I (2008) Generalist foraging of pollinators: diet expansion at high density. J Ecol 96:1002–1010

    Article  Google Scholar 

  • Franzen M, Larsson M, Nilsson S (2009) Small local population sizes and high habitat patch fidelity in a specialised solitary bee. J Insect Conserv 13:89–95

    Article  Google Scholar 

  • Franzen M, Nilsson SG (2013) High population variability and source-sink dynamics in a solitary bee species. Ecology 94:1400–1408

    Article  PubMed  Google Scholar 

  • Fründ J, Dormann CF, Holzschuh A, Tscharntke T (2013) Bee diversity effects on pollination depend on functional complementarity and niche shifts. Ecology 94:2042–2054

    Article  PubMed  Google Scholar 

  • Génissel A, Aupinel P, Bressac C, Tasei JN, Chevrier C (2002) Influence of pollen origin on performance of Bombus terrestris micro-colonies. Entomol Exp Appl 104:329–336

    Article  Google Scholar 

  • Greenleaf SS, Williams NM, Winfree R, Kremen C (2007) Bee foraging ranges and their relationship to body size. Oecologia 153:589–596

    Article  PubMed  Google Scholar 

  • Hanski I, Erälahti C, Kankare M, Ovaskainen O, Sirén H (2004) Variation in migration propensity among individuals maintained by landscape structure. Ecol Lett 7:958–966

    Article  Google Scholar 

  • Hill JK, Thomas CD, Blakeley DS (1999) Evolution of flight morphology in a butterfly that has recently expanded its geographic range. Oecologia 121:165–170

    Article  Google Scholar 

  • Jauker B, Krauss J, Jauker F, Steffan-Dewenter I (2013) Linking life history traits to pollinator loss in fragmented calcareous grasslands. Landscape Ecol 28:107–120

    Article  Google Scholar 

  • Kremen C (2005) Managing ecosystem services: what do we need to know about their ecology? Ecol Lett 8:468–479

    Article  PubMed  Google Scholar 

  • Kleijn D, van Langevelde F (2006) Interacting effects of landscape context and habitat quality on flower visiting insects in agricultural landscapes. Basic Appl Ecol 7:201–214

    Article  Google Scholar 

  • Klein AM, Vaissiere BE, Cane JH, Steffan-Dewenter I, Cunningham SA, Kremen C, Tscharntke T (2007) Importance of pollinators in changing landscapes for world crops. Proc Roy Soc B-Biol Sci 274(1608):303–313

    Article  Google Scholar 

  • Kunin WE (1993) Sex and the single mustard: population density and pollinator behavior effects on seed-set. Ecology 74:2145–2160

    Article  Google Scholar 

  • Levy RA, Nufio CR (2015) Dispersal potential impacts size clines of grasshoppers across an elevation gradient. Oikos 124:610–619

    Article  Google Scholar 

  • MacArthur RH, Diamond JM, Karr JR (1972) Density compensation in island faunas. Ecology 53:330–342

    Article  Google Scholar 

  • Michener CD (2007) The bees of the world, 2nd edn. Johns Hopkins University Press, Baltimore

    Google Scholar 

  • Peat J, Darvill B, Ellis J, Goulson D (2005) Effects of climate on intra- and interspecific size variation in bumble-bees. Funct Ecol 19:145–151

    Article  Google Scholar 

  • Radmacher S, Strohm E (2010) Factors affecting offspring body size in the solitary bee Osmia bicornis (Hymenoptera, Megachilidae). Apidologie 41:169–177

    Article  Google Scholar 

  • Schweiger O, Maelfait JP, van Wingerden W, Hendrickx F, Billeter R, Speelmans M, Augenstein I, Aukema B, Aviron S, Bailey D, Bukacek R (2005) Quantifying the impact of environmental factors on arthropod communities in agricultural landscapes across organizational levels and spatial scales. J Appl Ecol 42:1129–1139

    Article  Google Scholar 

  • Steffan-Dewenter I, Münzenberg U, Bürger C, Thies C, Tscharntke T (2002) Scale-dependent effects of landscape context on three pollinator guilds. Ecology 83:1421–1432

    Article  Google Scholar 

  • Steffan-Dewenter I, Tscharntke T (1999) Effects of habitat isolation on pollinator communities and seed set. Oecologia 121:432–440

    Article  Google Scholar 

  • Stout JC (2000) Does size matter? Bumblebee behaviour and the pollination of Cytisus scoparius L. (Fabaceae). Apidologie 31:129–139

    Article  Google Scholar 

  • Taylor PD, Merriam G (1995) Wing morphology of a forest damselfly is related to landscape structure. Oikos 73:43–48

    Article  Google Scholar 

  • Tepedino VJ, Sipes SD, Griswold TL (1999) The reproductive biology and effective pollinators of the endangered beardtongue Penstemon penlandii (Scrophulariaceae). Plant Syst Evol 219:39–54

    Article  Google Scholar 

  • Vivarelli D, Petanidou T, Nielsen A, Cristofolini G (2011) Small-size bees reduce male fitness of the flowers of Ononis masquillierii (Fabaceae), a rare endemic plant in the northern Apennines. Bot J Linn Soc 165:267–277

    Article  Google Scholar 

  • Westrich P (1989) Die Wildbienen Baden-Württembergs. Eugen Ulmer, Stuttgart

    Google Scholar 

  • Williams NM, Crone EE, Roulston TH, Minckley RL, Packer L, Potts SG (2010) Ecological and life-history traits predict bee species responses to environmental disturbances. Biol Conserv 143:2280–2291

    Article  Google Scholar 

  • Willmer PG, Finlayson K (2014) Big bees do a better job: intraspecific size variation influences pollination effectiveness. J Poll Ecol 14:244–254

    Google Scholar 

  • Winfree R, Aguilar R, Vázquez DP, LeBuhn G, Aizen MA (2009) A meta-analysis of bees’ responses to anthropogenic disturbance. Ecology 90:2068–2076

    Article  PubMed  Google Scholar 

  • Zurbuchen A, Cheesman S, Klaiber J, Müller A, Hein S, Dorn S (2010) Long foraging distances impose high costs on offspring production in solitary bees. J Anim Ecol 79:674–681

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

DW was funded by Deutsche Bundesstiftung Umwelt (DBU). We thank M. Zerbe and K. Weiss of Amt für Ländlichen Raum Landkreis Marburg Biedenkopf for cooperation in site selection and farmers for access to their land. The Hessisches Ministerium für Energie, Landwirtschaft und Verbraucherschutz (HMUELV) and the Hessisches Landesamt für Umwelt und Geologie (HLUG) kindly provided digital land-use maps. We thank Stefanie Ettling for supporting pollen analysis and two anonymous reviewers for helpful comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniela Warzecha.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 16 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Warzecha, D., Diekötter, T., Wolters, V. et al. Intraspecific body size increases with habitat fragmentation in wild bee pollinators. Landscape Ecol 31, 1449–1455 (2016). https://doi.org/10.1007/s10980-016-0349-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10980-016-0349-y

Keywords

Navigation