Skip to main content
Log in

Influence of thermal transport properties of NEPCM for cool thermal energy storage system

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

The present work deals with thermal energy storage behavior of the nano-enhanced phase change materials (NEPCMs) for building space cooling application. The NEPCMs have been prepared using Deionized (DI) water as the base phase change material (PCM) and multi-walled carbon nanotubes (MWCNTs) as nanomaterial with mass concentration of 0.25%, 0.5%, and 0.75%. For better stability of additive materials in the base PCM, sodium dodecyl-benzene sulfonate (SDBS) has been chosen as an additive element. The sub-cooling of the DI water has been completely eliminated for a mass concentration of 0.75% of MWCNT. The differential scanning calorimetry(DSC) analysis has been conducted to measure the phase transition properties of NEPCMs. The enhancements of 12.8% and 14.13% in latent heat values for charging and discharging processes, respectively, were observed for maximum mass concentration. It has also been observed that the onset temperature for charging is reduced from − 12.8 to − 9.7 °C for NEPCM with maximum concentration. The maximum thermal conductivity (k) augmentation of 23% (solid phase) and 11.2% (liquid phase) has been achieved by the NEPCM having a mass concentration of 0.75% MWCNT at − 10 °C and 15 °C, respectively. According to the study results the reductions in total charging times are 28% and 19% with the NEPCM holding a mass concentration of 0.75% MWCNT for − 8 °C and − 6 °C heat transfer fluid (HTF) temperatures, respectively. The environmental pollution remediation can be achieved by the reduction in energy input to the chiller by minimizing the total time taken for the charging the PCM.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Availability of data and materials

The authors declare that all the data supporting the findings of this study are available within the article.

Abbreviations

T:

Temperature (°C)

t:

Time (s)

k :

Thermal conductivity (W m−1 K−1)

σ:

Uncertainity

bf:

Base fluid

nf:

Nano fluid

logg:

Data logger

inst:

Instrument

DI:

Deionized

PCM:

Phase change material

DSC:

Differential scanning calorimetry

RTD:

Resistance temperature detector

SEC:

Specific energy consumption

SEM:

Scanning electron microscope

TEM:

Transmission electron microscope

HTF:

Heat transfer fluid

GNP:

Graphenennanoplatelets

CTS:

Cool thermal storage

LDPE:

Low density polyethylene

PTDC:

Proportionate temperature differential controller

MWCNT:

Multi wall carbon nanotubes

NEPCM:

Nano-enhanced phase change material

References

  1. Li G, Hwang Y, Radermacher R. Review of cold storage materials for air conditioning application. Int J Refrig. 2012;35:2053–77. https://doi.org/10.1016/j.ijrefrig.2012.06.003.

    Article  CAS  Google Scholar 

  2. Li G, Hwang Y, Radermacher R. Experimental investigation on energy and exergy performance of adsorption cold storage for space cooling application. Int J Refrig. 2014;44:23–35. https://doi.org/10.1016/j.ijrefrig.2014.05.013.

    Article  Google Scholar 

  3. Li G, Hwang Y, Radermacher R, Chun HH. Review of cold storage materials for subzero applications. Energy. 2013;51:1–17. https://doi.org/10.1016/j.energy.2012.12.002.

    Article  CAS  Google Scholar 

  4. Cox SJ, Kim D, Cho H, Mago P. Real time optimal control of district cooling system with thermal energy storage using neural networks. Appl Energy. 2019;238:466–80. https://doi.org/10.1016/j.apenergy.2019.01.093.

    Article  Google Scholar 

  5. Li XY, Yang L, Wang XL, Miao XY, Yao Y, Qiang QQ. Investigation on the charging process of a multi-PCM latent heat thermal energy storage unit for use in conventional air-conditioning systems. Energy. 2018;150:591–600. https://doi.org/10.1016/j.energy.2018.02.107.

    Article  Google Scholar 

  6. Marimón MA, Arias J, Lundqvist P, Bruno JC, Coronas A. Integration of trigeneration in an indirect cascade refrigeration system in supermarkets. Energy Build. 2011;43:1427–34. https://doi.org/10.1016/j.enbuild.2011.02.003.

    Article  Google Scholar 

  7. Krishna J, Kishore PS, Solomon AB. Heat pipe with nano enhanced-PCM for electronic cooling application. Exp Therm Fluid Sci. 2017;81:84–92. https://doi.org/10.1016/j.expthermflusci.2016.10.014.

    Article  CAS  Google Scholar 

  8. Li G. Sensible heat thermal storage energy and exergy performance evaluations. Renew Sustain Energy Rev. 2016;53:897–923. https://doi.org/10.1016/j.rser.2015.09.0063.

    Article  CAS  Google Scholar 

  9. Li G, Zheng X. Thermal energy storage system integration forms for a sustainable future. Renew Sustain Energy Rev. 2016;62:736–57. https://doi.org/10.1016/j.rser.2016.04.076.

    Article  Google Scholar 

  10. Li G. Energy and exergy performance assessments for latent heat thermal energy storage systems. Renew Sustain Energy Rev. 2015;51:926–54. https://doi.org/10.1016/j.rser.2015.06.0522.

    Article  Google Scholar 

  11. Kumaresan V, Chandrasekaran P, Nanda M, Maini AK, Velraj R. Role of PCM based nanofluids for energy efficient cool thermal storage system. Int J Refrig. 2013;36:1641–7. https://doi.org/10.1016/j.ijrefrig.2013.04.010.

    Article  CAS  Google Scholar 

  12. Ghahremannezhad A, Xu H, Salimpour MR, Wang P, Vafai K. Thermal performance analysis of phase change materials (PCMs) embedded in gradient porous metal foams. Appl Therm Eng. 2020;179:115731. https://doi.org/10.1016/j.applthermaleng.2020.1157312.

    Article  CAS  Google Scholar 

  13. Mesalhy O, Lafdi K, Elgafy A, Bowman K. Numerical study for enhancing the thermal conductivity of phase change material (PCM) storage using high thermal conductivity porous matrix. Energy Convers Manag. 2005;46:847–67. https://doi.org/10.1016/j.enconman.2004.06.010.

    Article  CAS  Google Scholar 

  14. Wu S, Zhu D, Li X, Li H, Lei J. Thermal energy storage behavior of Al2O3–H2O nanofluids. ThermochimActa. 2009;483:73–7. https://doi.org/10.1016/j.tca.2008.11.006.

    Article  CAS  Google Scholar 

  15. Leong KY, Abdul Rahman MR, Gurunathan BA. Nano-enhanced phase change materials: a review of thermo-physical properties, applications and challenges. J Energy Storage. 2019;21:18–31. https://doi.org/10.1016/j.est.2018.11.0082.

    Article  Google Scholar 

  16. Kenisarin MM, Mahkamov K, Costa SC, Makhkamova I. Melting and solidification of PCMs inside a spherical capsule: a critical review. J Energy Storage. 2020;27:101082. https://doi.org/10.1016/j.est.2019.101082.

    Article  Google Scholar 

  17. Li L, Yu H, Wang X, Zheng S. Thermal analysis of melting and freezing processes of phase change materials (PCMs) based on dynamic DSC test. Energy Build. 2016;130:388–96. https://doi.org/10.1016/j.enbuild.2016.08.058.

    Article  Google Scholar 

  18. American Society for Testing and Materials, Standard test method for enthalpies of fusion and crystallization by differential scanning calorimetry. ASTM 2012;E:793–6.

  19. Tittelein P, Gibout S, Franquet E, Johannes K, Zalewski L, Kuznik F, et al. Simulation of the thermal and energy behaviour of a composite material containing encapsulated-PCM: influence of the thermodynamical modelling. Appl Energy. 2015;140:269–74. https://doi.org/10.1016/j.apenergy.2014.11.055.

    Article  Google Scholar 

  20. Günther E, Hiebler S, Mehling H, Redlich R. Enthalpy of phase change materials as a function of temperature: required accuracy and suitable measurement methods. Int J Thermophys. 2009;30:1257–69. https://doi.org/10.1007/s10765-009-0641-z.

    Article  CAS  Google Scholar 

  21. Mo S, Chen Y, Jia L, Luo X. Reduction of supercooling of water by TiO2 nanoparticles as observed using differential scanning calorimeter. J Exp Nanosci. 2013;8:533–9. https://doi.org/10.1080/17458080.2011.572085.

    Article  CAS  Google Scholar 

  22. Munyalo JM, Zhang X, Xu X. Experimental investigation on supercooling, thermal conductivity and stability of nanofluid based composite phase change material. J Energy Storage. 2018;17:47–55. https://doi.org/10.1016/j.est.2018.02.0063.

    Article  Google Scholar 

  23. Vikram MP, Kumaresan V, Christopher S, Velraj R. Experimental studies on solidification and subcooling characteristics of water-based phase change material (PCM) in a spherical encapsulation for cool thermal energy storage applications. Int J Refrig. 2019;100:454–62. https://doi.org/10.1016/j.ijrefrig.2018.11.025.

    Article  CAS  Google Scholar 

  24. Pabakaran R, Kumar JPN, Lal DM, Selvam C, Harish S. Constrained melting of graphene-based phase change nanocomposites inside a sphere. J Therm Anal Calorim. 2020;139:941–52. https://doi.org/10.1007/s10973-019-08458-4.

    Article  CAS  Google Scholar 

  25. Chandrasekaran P, Cheralathan M, Velraj R. Effect of fill volume on solidification characteristics of DI (deionized) water in a spherical capsule—an experimental study. Energy. 2015;90:508–15. https://doi.org/10.1016/j.energy.2015.07.0862.

    Article  Google Scholar 

  26. Moffat RJ. Describing the uncertainties in experimental results. Exp Therm Fluid Sci. 1988;1:3–17.

    Article  Google Scholar 

  27. Sivashankar M, Selvam C, Manikandan S, Harish S. Performance improvement in concentrated photovoltaics using nano-enhanced phase change material with graphenenanoplatelets. Energy. 2020;208:118408. https://doi.org/10.1016/j.energy.2020.118408.

    Article  CAS  Google Scholar 

  28. Huang L, Liu Z, Liu Y, Gou Y, Wang L. Effect of contact angle on water droplet freezing process on a cold flat surface. Exp Therm Fluid Sci. 2012;40:74–80. https://doi.org/10.1016/j.expthermflusci.2012.02.0023.

    Article  CAS  Google Scholar 

  29. He B, Martin V, Setterwall F. Phase transition temperature ranges and storage density of paraffin wax phase change materials. Energy. 2004;29:1785–804. https://doi.org/10.1016/j.energy.2004.03.002.

    Article  CAS  Google Scholar 

  30. Parameshwaran R, Sarı A, Jalaiah N, Karunakaran R. Applications of thermal analysis to the study of phase-change materials. Calorim: Handb. Therm. Anal; 2018.

    Book  Google Scholar 

  31. American Society of Heating, Refrigerating and Air-conditioning Engineers. ASHRAE Handbook. Fundamentals. GA: Atlanta; 1997.

    Google Scholar 

  32. Yu W, Xie H, Bao D. Enhanced thermal conductivities of nanofluids containing graphene oxide nanosheets. Nanotechnology. 2010. https://doi.org/10.1088/0957-4484/21/5/055705.

    Article  PubMed  Google Scholar 

  33. Sati P, Shende RC, Ramaprabhu S. An experimental study on thermal conductivity enhancement of DI water-EG based ZnO(CuO)/graphene wrapped carbon nanotubes nanofluids. ThermochimActa. 2018;666:75–81. https://doi.org/10.1016/j.tca.2018.06.0084.

    Article  CAS  Google Scholar 

  34. Mehrali M, Sadeghinezhad E, Latibari ST, Kazi SN, Mehrali M, Zubir MNBM, et al. Investigation of thermal conductivity and rheological properties of nanofluids containing graphenenanoplatelets. Nanoscale Res Lett. 2014;9:1–12.

    Article  Google Scholar 

  35. Muthoka MJ, Xuelai Z, Xioafeng X. Study on thermophysical properties of nanofluid based composite phase change material for low temperature application. Energy Procedia. 2017;142:3313–9. https://doi.org/10.1016/j.egypro.2017.12.4633.

    Article  CAS  Google Scholar 

  36. Khedkar RS, Shrivastava N, Sonawane SS, Wasewar KL. Experimental investigations and theoretical determination of thermal conductivity and viscosity of TiO2-ethylene glycol nanofluid. Int Commun Heat Mass Transf. 2016;73:54–61. https://doi.org/10.1016/j.icheatmasstransfer.2016.02.0043.

    Article  CAS  Google Scholar 

  37. Assael MJ, Chen CF, Metaxa I, Wakeham WA. Thermal conductivity of suspensions of carbon nanotubes in water. Int J Thermophys. 2004;25:971–85. http://www.nanoscalereslett.com/content/9/1/15.

  38. Xing M, Yu J, Wang R. Experimental investigation and modelling on the thermal conductivity of CNTs based nanofluids. Int J Therm Sci. 2016;104:404–11. https://doi.org/10.1016/j.ijthermalsci.2016.01.024.

    Article  CAS  Google Scholar 

  39. Liu YD, Zhou YG, Tong MW, Zhou XS. Experimental study of thermal conductivity and phase change performance of nanofluids PCMs. MicrofluidNanofluidics. 2009;7:579–84. https://doi.org/10.1007/s10404-009-0423-8.

    Article  CAS  Google Scholar 

  40. Wu T, Xie N, Niu J, Luo J, Gao X, Fang Y, et al. Preparation of a low-temperature nanofluid phase change material: MgCl2–H2O eutectic salt solution system with multi-walled carbon nanotubes (MWCNTs). Int J Refrig. 2020;113:136–44. https://doi.org/10.1016/j.ijrefrig.2020.02.008.

    Article  CAS  Google Scholar 

  41. Yadav C, Sahoo RR. Thermal performance analysis of MWCNT-based capric acid PCM thermal energy storage system. J Therm Anal Calorim. 2020. https://doi.org/10.1007/s10973-020-10186-z.

    Article  Google Scholar 

Download references

Acknowledgements

The authors wish to thank the Department of Mechanical Engineering, SRM Institute of Science and Technology, Kattankulathur for the support and encouragement for carrying out this research work. The authors also like to thank the organizing committee of ICAME 2020 for the motivation and support.

Funding

The authors state that they did not receive any specific grant from the funding agencies in the public, commercial or not-for-profit sectors.

Author information

Authors and Affiliations

Authors

Contributions

AS conducted the experiments in various surrounding conditions and consolidate the results. MC and AS interrupt the physical scenario behind the improvement of the thermo physical properties of the Phase Chance Materials (PCM)

Corresponding author

Correspondence to M. Cheralathan.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sathishkumar, A., Cheralathan, M. Influence of thermal transport properties of NEPCM for cool thermal energy storage system. J Therm Anal Calorim 147, 367–378 (2022). https://doi.org/10.1007/s10973-020-10339-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-020-10339-0

Keywords

Navigation