Skip to main content
Log in

Modelling of heat transfer coefficients during condensation inside an enhanced inclined tube

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

In this study, experiments were conducted for the flow of R-134a condensing in an enhanced inclined tube at a saturation condensing temperature of 40 °C. The enhanced tube had a helix angle of 14° with a mean internal diameter of 8.71 mm. The mass velocities were varied from 200 to 600 kg m−2 s−1, while the inclination angles were varied from − 90° to + 90°. It was found that the inclination angle had a considerable effect on the flow patterns and the thermal performance. It was also found that the maximum heat transfer coefficients were obtained at tube inclinations of between − 15° and − 5° (downward flows). By using the experimental data and artificial neural networks (ANN), a model was proposed to predict the heat transfer coefficients during condensation inside the enhanced inclined tube. By using four statistical criteria, the performance of the proposed model was examined against experimental data, and it was found that ANN was a useful tool for the prediction of the heat transfer coefficients based on the effective parameters of vapour quality, mass velocity and inclination angle.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

(Adapted from Thome [77])

Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Abbreviations

\(A_{\text{cs}}\) :

Test section cross-sectional area (m2)

\(A_{\text{i}}\) :

Internal surface area (m2)

e :

Fin height (m)

G :

Mass velocity (kg m−2 s−1)

h :

Heat transfer coefficient (W m−2 K−1)

L t :

Heat transfer length of test section (m)

\(Q^{.}\) :

Heat transfer rate (W)

T :

Temperature (K)

T sat :

Saturation temperature (K)

\(\bar{T}_{\text{w,i}}\) :

Average wall inner temperature (K)

x :

Vapour mass fraction (−)

\(\beta\) :

Inclination angle (°)

a:

Actual

pred:

Predicted

r, in:

Inlet refrigerant temperature

r, out:

Outlet refrigerant temperature

w, test:

Water side of the test section

EF:

Enhancement factor

MAE:

Mean absolute error

MP:

Membership function

MRE:

Mean relative error

RMSE:

Root-mean-square error

MSE:

Mean squared error

MAPE:

Mean absolute percentage error

R :

Correlation coefficient

R 2 :

Coefficient of determination

RMSE:

Root-mean-square error

References

  1. Cavallini A, Censi G, Col DD, Doretti L, Rossetto L, Longo GA. Heat transfer coefficients of HFC refrigerants during condensation at high temperature inside an enhanced tube. In: 9th international refrigeration and air conditioning conference, Purdue, USA, 2002, paper 563.

  2. Briggs A, Kelemenis C, Rose JW. Heat transfer and pressure drop measurements for in-tube condensation of CFC-113 using microfin tubes and wire inserts. Exp Heat Transf. 2000;13(3):163–81.

    Article  CAS  Google Scholar 

  3. Cavallini A, Del Col D, Doretti L, Longo GA, Rossetto L. Heat transfer and pressure drop during condensation of refrigerants inside horizontal enhanced tubes. Int J Refrig. 2000;23(1):4–25.

    Article  CAS  Google Scholar 

  4. Li W, Tang W, Chen J, Zhu H, Kukulka DJ, He Y, Sun Z, Du J, Zhang B. Convective condensation in three enhanced tubes with different surface modifications. Exp Thermal Fluid Sci. 2018;97:79–88.

    Article  CAS  Google Scholar 

  5. Wang HS, Honda H. Condensation of refrigerants in horizontal microfin tubes: comparison of prediction methods for heat transfer. Int J Refrig. 2003;26(4):452–60.

    Article  CAS  Google Scholar 

  6. Guo S-P, Wu Z, Li W, Kukulka D, Sundén B, Zhou X-P, Wei J-J, Simon T. Condensation and evaporation heat transfer characteristics in horizontal smooth, herringbone and enhanced surface EHT tubes. Int J Heat Mass Transf. 2015;85:281–91.

    Article  CAS  Google Scholar 

  7. Kukulka DJ, Smith R, Li W. Comparison of tubeside condensation and evaporation characteristics of smooth and enhanced heat transfer 1EHT tubes. Appl Therm Eng. 2015;89:1079–86.

    Article  CAS  Google Scholar 

  8. Ewim DRE, Meyer JP. Condensation heat transfer coefficients of enhanced tubes. In: 3rd Southern African solar energy conference, South Africa, 11–13 May 2015.

  9. Mohseni SG, Akhavan-Behabadi MA. Visual study of flow patterns during condensation inside a microfin tube with different tube inclinations. Int Commun Heat Mass Transfer. 2011;38(8):1156–61.

    Article  CAS  Google Scholar 

  10. Zhang J, Li W, Minkowycz W. Numerical simulation of R410A condensation in horizontal microfin tubes. Numer Heat Transf Part A: Appl. 2017;71(4):361–76.

    Article  CAS  Google Scholar 

  11. Diani A, Campanale M, Cavallini A, Rossetto L. Low GWP refrigerants condensation inside a 24 mm ID microfin tube. Int J Refrig. 2018;86:312–21.

    Article  CAS  Google Scholar 

  12. Colombo LPM, Lucchini A, Muzzio A. Flow patterns, heat transfer and pressure drop for evaporation and condensation of R134a in microfin tubes. Int J Refrig. 2012;35(8):2150–65.

    Article  CAS  Google Scholar 

  13. Jung D, Cho Y, Park K. Flow condensation heat transfer coefficients of R22, R134a, R407C, and R410A inside plain and microfin tubes. Int J Refrig. 2004;27(1):25–32.

    Article  CAS  Google Scholar 

  14. Han D, Lee KJ. Experimental study on condensation heat transfer enhancement and pressure drop penalty factors in four microfin tubes. Int J Heat Mass Transf. 2005;48(18):3804–16.

    Article  CAS  Google Scholar 

  15. Zhang J, Zhou N, Li W, Luo Y, Li S. An experimental study of R410A condensation heat transfer and pressure drops characteristics in microfin and smooth tubes with 5 mm OD. Int J Heat Mass Transf. 2018;125:1284–95.

    Article  CAS  Google Scholar 

  16. Bashar MK, Nakamura K, Kariya K, Miyara A. Experimental study of condensation heat transfer and pressure drop inside a small diameter microfin and smooth tube at low mass flux condition. Appl Sci. 2018;8(11):2146.

    Article  CAS  Google Scholar 

  17. Li G, Huang L, Tao L. Experimental investigation of refrigerant condensation heat transfer characteristics in the horizontal microfin tubes. Appl Therm Eng. 2017;123:1484–93.

    Article  CAS  Google Scholar 

  18. Adelaja AO, Dirker J, Meyer JP. Experimental study of the pressure drop during condensation in an inclined smooth tube at different saturation temperatures. Int J Heat Mass Transf. 2017;105:237–51.

    Article  CAS  Google Scholar 

  19. Lyulin Y, Marchuk I, Chikov S, Kabov O. Experimental study of laminar convective condensation of pure vapor inside an inclined circular tube. Microgravity Sci Technol. 2011;23(4):439–45.

    Article  CAS  Google Scholar 

  20. Lips S, Meyer JP. Experimental study of convective condensation in an inclined smooth tube. Part I: inclination effect on flow pattern and heat transfer coefficient. Int J Heat Mass Transf. 2012;55(1):395–404.

    Article  CAS  Google Scholar 

  21. Meyer JP, Dirker J, Adelaja AO. Condensation heat transfer in smooth inclined tubes for R134a at different saturation temperatures. Int J Heat Mass Transf. 2014;70:515–25.

    Article  CAS  Google Scholar 

  22. Ewim DRE, Meyer JP, Noori Rahim Abadi SMA. Condensation heat transfer coefficients in an inclined smooth tube at low mass fluxes. Int J Heat Mass Transf. 2018;123:455–67.

    Article  CAS  Google Scholar 

  23. Romero-Méndez R, Lara-Vázquez P, Oviedo-Tolentino F, Durán-García HM, Pérez-Gutiérrez FG, Pacheco-Vega A. Use of artificial neural networks for prediction of the convective heat transfer coefficient in evaporative mini-tubes. Ingeniería, Investigación y Tecnología. 2016;17(1):23–34.

    Article  Google Scholar 

  24. Ricardo R-M, Manuel H-LJ, Martín D-GH, Arturo P-V. Use of artificial neural networks for prediction of convective heat transfer in evaporative units. Ingeniería, Investigación y Tecnología. 2014;15(1):93–101.

    Article  Google Scholar 

  25. Díaz G, Sen M, Yang KT, McClain RL. Simulation of heat exchanger performance by artificial neural networks. HVAC&R Res. 1999;5(3):195–208.

    Article  Google Scholar 

  26. Zendehboudi A, Li X. A robust predictive technique for the pressure drop during condensation in inclined smooth tubes. Int Commun Heat Mass Transf. 2017;86:166–73.

    Article  Google Scholar 

  27. Zendehboudi A, Li X. Robust predictive models for estimating frost deposition on horizontal and parallel surfaces. Int J Refrig. 2017;80:225–37.

    Article  Google Scholar 

  28. Wang Q, Xie G, Zeng M, Luo L. Prediction of heat transfer rates for shell-and-tube heat exchangers by artificial neural networks approach. J Therm Sci. 2006;15(3):257–62.

    Article  Google Scholar 

  29. Azizi S, Ahmadloo E. Prediction of heat transfer coefficient during condensation of R134a in inclined tubes using artificial neural network. Appl Therm Eng. 2016;106:203–10.

    Article  CAS  Google Scholar 

  30. Xie G, Sunden B, Wang Q, Tang L. Performance predictions of laminar and turbulent heat transfer and fluid flow of heat exchangers having large tube-diameter and large tube-row by artificial neural networks. Int J Heat Mass Transf. 2009;52(11):2484–97.

    Article  CAS  Google Scholar 

  31. Yaïci W, Entchev E. Performance prediction of a solar thermal energy system using artificial neural networks. Appl Therm Eng. 2014;73(1):1348–59.

    Article  Google Scholar 

  32. Islamoglu Y. A new approach for the prediction of the heat transfer rate of the wire-on-tube type heat exchanger—use of an artificial neural network model. Appl Therm Eng. 2003;23(2):243–9.

    Article  Google Scholar 

  33. Balcilar M, Dalkilic AS, Aroonrat K, Wongwises S. Neural network based analyses for the determination of evaporation heat transfer characteristics during downward flow of R134a inside a vertical smooth and corrugated tube. Arab J Sci Eng. 2014;39(2):1271–90.

    Article  CAS  Google Scholar 

  34. Jafari Nasr MR, Habibi Khalaj A, Mozaffari SH. Modeling of heat transfer enhancement by wire coil inserts using artificial neural network analysis. Appl Therm Eng. 2010;30(2):143–51.

    Article  Google Scholar 

  35. Scalabrin G, Condosta M, Marchi P. Mixtures flow boiling: modeling heat transfer through artificial neural networks. Int J Therm Sci. 2006;45(7):664–80.

    Article  Google Scholar 

  36. Hamdan MA, Abdelhafez EA, Hamdan AM, Haj Khalil RA. Heat transfer analysis of a flat-plate solar air collector by using an artificial neural network. J Infrastruct Syst. 2016;22(4):A4014004.

    Google Scholar 

  37. Xie G, Wang Q, Zeng M, Luo L. Heat transfer analysis for shell-and-tube heat exchangers with experimental data by artificial neural networks approach. Appl Therm Eng. 2007;27(5–6):1096–104.

    Article  CAS  Google Scholar 

  38. Zhao N, Li Z. Experiment and artificial neural network prediction of thermal conductivity and viscosity for alumina-water nanofluids. Materials. 2017;10(5):552.

    Article  CAS  PubMed Central  Google Scholar 

  39. Shojaeefard MH, Zare J, Tabatabaei A, Mohammadbeigi H. Evaluating different types of artificial neural network structures for performance prediction of compact heat exchanger. Neural Comput Appl. 2017;28(12):3953–65.

    Article  Google Scholar 

  40. Kamar HM, Ahmad R, Kamsah NB, Mohamad Mustafa AF. Artificial neural networks for automotive air-conditioning systems performance prediction. Appl Therm Eng. 2013;50(1):63–70.

    Article  Google Scholar 

  41. Yang K-T. Artificial neural networks (ANNs): a new paradigm for thermal science and engineering. J Heat Transf. 2008;130(9):1–19.

    Article  Google Scholar 

  42. Balcilar M, Dalkilic A, Wongwises S. Artificial neural network techniques for the determination of condensation heat transfer characteristics during downward annular flow of R134a inside a vertical smooth tube. Int Commun Heat Mass Transf. 2011;38(1):75–84.

    Article  CAS  Google Scholar 

  43. Tan CK, Ward J, Wilcox SJ, Payne R. Artificial neural network modelling of the thermal performance of a compact heat exchanger. Appl Therm Eng. 2009;29(17):3609–17.

    Article  CAS  Google Scholar 

  44. Kamble LV, Pangavhane DR, Singh TP. Artificial neural network based prediction of heat transfer from horizontal tube bundles immersed in gas–solid fluidized bed of large particles. J Heat Transf. 2015;137(1):012901-1–9.

    Google Scholar 

  45. Tandiroglu A. Artificial neural network approach for transient forced convective heat transfer optimization. Int J Mech Eng Appl. 2016;4(6):212–25.

    Google Scholar 

  46. Ng BC, Darus IZM, Jamaluddin H, Kamar HM. Application of adaptive neural predictive control for an automotive air conditioning system. Appl Therm Eng. 2014;73(1):1244–54.

    Article  Google Scholar 

  47. Verma TN, Nashine P, Singh DV, Singh TS, Panwar D. ANN: prediction of an experimental heat transfer analysis of concentric tube heat exchanger with corrugated inner tubes. Appl Therm Eng. 2017;120:219–27.

    Article  Google Scholar 

  48. Akasaka R, Tanaka K, Higashi Y. Thermodynamic property modeling for 2,3,3,3-tetrafluoropropene (HFO-1234yf). Int J Refrig. 2010;33(1):52–60.

    Article  CAS  Google Scholar 

  49. Mohanraj M, Jayaraj S, Muraleedharan C. Applications of artificial neural networks for refrigeration, air-conditioning and heat pump systems—a review. Renew Sustain Energy Rev. 2012;16(2):1340–58.

    Article  Google Scholar 

  50. Mohanraj M, Jayaraj S, Muraleedharan C. Applications of artificial neural networks for thermal analysis of heat exchangers—a review. Int J Therm Sci. 2015;90:150–72.

    Article  Google Scholar 

  51. Hu Q, So AT, Tse W, Ren Q. Development of ANN-based models to predict the static response and dynamic response of a heat exchanger in a real MVAC system. In: Journal of Physics: conference series, IOP Publishing, 2005.

  52. Çebi A, Akdoğan E, Celen A, Dalkilic A. Prediction of friction factor of pure water flowing inside vertical smooth and microfin tubes by using artificial neural networks. Heat Mass Transf. 2017;53(2):673–85.

    Article  CAS  Google Scholar 

  53. Azizi S, Ahmadloo E, Awad MM. Prediction of void fraction for gas–liquid flow in horizontal, upward and downward inclined pipes using artificial neural network. Int J Multiph Flow. 2016;87:35–44.

    Article  CAS  Google Scholar 

  54. Ghajar AJ, Bhagwat SM. Gas-liquid two phase flow phenomenon in near horizontal upward and downward inclined pipe orientations. Int J Mech Aerospace, Ind Mechatron Eng. 2014;8(6):1039–53.

    Google Scholar 

  55. Boostani M, Karimi H, Azizi S. Heat transfer to oil-water flow in horizontal and inclined pipes: experimental investigation and ANN modeling. Int J Therm Sci. 2017;111:340–50.

    Article  CAS  Google Scholar 

  56. Noori Rahim Abadi SMA, Mehrabi M, Meyer JP. Prediction and optimization of condensation heat transfer coefficients and pressure drops of R134a inside an inclined smooth tube. Int J Heat Mass Transf. 2018;124:953–66.

    Article  CAS  Google Scholar 

  57. Adelaja AO, Dirker J, Meyer JP. Convective condensation heat transfer of R134a in tubes at different inclination angles. Int J Green Energy. 2016;13(8):812–21.

    Article  CAS  Google Scholar 

  58. Abadi SNR, Meyer J, Dirker J. Numerical simulation of condensation inside an inclined smooth tube. Chem Eng Sci. 2018;182:132–45.

    Article  CAS  Google Scholar 

  59. Abadi SNR, Mehrabi M, Meyer JP, Dirker J. Effect of saturation temperature on the condensation of R134a inside an inclined smooth tube. Int J Refrig. 2018;94:186–204.

    Article  CAS  Google Scholar 

  60. Abadi SMA, Meyer JP, Dirker J. Effect of inclination angle on the condensation of R134a inside an inclined smooth tube. Chem Eng Res Design. 2018;132:346–57.

    Article  CAS  Google Scholar 

  61. Caniere H, T’Joen C, Willockz A, De Paepe M, Christians M, Van Rooyen E, Liebenberg L, Meyer JP. Horizontal two-phase flow characterization for small diameter tubes with a capacitance sensor. Meas Sci Technol. 2007;18:2898.

    Article  CAS  Google Scholar 

  62. Ji T, Liebenberg L, Meyer JP. Heat transfer enhancement during condensation in smooth tubes with helical wire inserts. Heat Transf Eng. 2009;30(5):337–52.

    Article  CAS  Google Scholar 

  63. Liebenberg L, Meyer JP. A review of flow pattern-based predictive correlations during refrigerant condensation in horizontally smooth and enhanced tubes. Heat Transf Eng. 2008;29(1):3–19.

    Article  CAS  Google Scholar 

  64. Liebenberg L, Thome JR, Meyer JP. Flow visualization and flow pattern identification with power spectral density distributions of pressure traces during refrigerant condensation in smooth and micro-fin tubes. J Heat Transf. 2005;127(3):209–20.

    Article  CAS  Google Scholar 

  65. Lips S, Meyer JP. Two-phase flow in inclined tubes with specific reference to condensation: a review. Int J Multiph Flow. 2011;37(8):845–59.

    Article  CAS  Google Scholar 

  66. Lips S, Meyer JP. Effect of gravity forces on heat transfer and pressure drop during condensation. Microgravity Sci Technol. 2011;24(3):157–64.

    Article  CAS  Google Scholar 

  67. Lips S, Meyer JP. Experimental study of convective condensation in an inclined smooth tube Part II: inclination effect on pressure drops and void fractions. Int J Heat Mass Transf. 2012;55:405–12.

    Article  CAS  Google Scholar 

  68. Olivier JA, Liebenberg L, Thome JR, Meyer JP. Heat transfer, pressure drop, and flow pattern recognition during condensation inside smooth, helical micro-fin, and herringbone tubes. Int J Refrig. 2007;30:609–23.

    Article  CAS  Google Scholar 

  69. Olivier SP, Meyer JP, De Paepe M, De Kerpel K. The influence of inclination angle on void fraction and heat transfer during condensation inside a smooth tube. Int J Multiph Flow. 2016;80:1–14.

    Article  CAS  Google Scholar 

  70. Suliman R, Liebenberg L, Meyer JP. Improved flow pattern map for accurate prediction of the heat transfer coefficients during condensation of R-134a in smooth horizontal tubes and within the low-mass flux range. Int J Heat Mass Transf. 2009;52(25–26):5701–11.

    Article  CAS  Google Scholar 

  71. Ewim DRE, Meyer JP. Pressure drop during condensation at low mass fluxes in smooth horizontal and inclined tubes. Int J Heat Mass Transf. 2019;133:686–701.

    Article  CAS  Google Scholar 

  72. Meyer JP, Ewim DRE. Heat transfer coefficients during the condensation of low mass fluxes in smooth horizontal tubes. Int J Multiph Flow. 2018;99:485–99.

    Article  CAS  Google Scholar 

  73. Ewim DRE, Kombo R, Meyer JP. Flow pattern and experimental investigation of heat transfer coefficients during the condensation of R134a at low mass fluxes in a smooth horizontal tube. In: 12th international conference on heat transfer, fluid mechanics and thermodynamics (HEFAT), Costa del Sol, Malaga, Spain, 2016, pp 264–269.

  74. Adelaja AO, Ewim DRE, Dirker J, Meyer JP. Experimental investigation on pressure drop and friction factor in tubes at different inclination angles during the condensation of R134a. In: Proceedings of the 15th international heat transfer conference, Kyoto, Paper IHTC15-9363, 2014, pp 10–15.

  75. Adelaja AO, Ewim DR, Dirker J, Meyer JP. Experimental investigation on pressure drop and friction factor in tubes at different inclination angles during the condensation of R134A. In: Proceedings of the 15th international heat transfer conference, Kyoto, paper IHTC15-9363, 2014, pp 10–15.

  76. Adelaja AO, Ewim DRE, Dirker J, Meyer JP. Heat transfer, void fraction and pressure drop during condensation inside inclined smooth and microfin tubes. Exp Therm Fluid Sci. 2019;109:109905.

    Article  CAS  Google Scholar 

  77. Thome JR. Condensation inside tubes. Eng Data Book. 2006;III(1979):1–27.

    Google Scholar 

  78. Géron A. Neural networks and deep learning. https://www.oreilly.com/library/view/neural-networks-and/9781492037354/ch01.html. Accessed 30th Aug 2019.

  79. Al Shamisi MH, Assi AH, Hejase HA. Using MATLAB to develop artificial neural network models for predicting global solar radiation in Al Ain City–UAE, Engineering education and research using MATLAB, IntechOpen2011.

Download references

Acknowledgements

The funding obtained from Tshwane University of Technology, NRF, TESP, Stellenbosch University/the University of Pretoria, SANERI/SANEDI, CSIR, TUT, EEDSM Hub and NAC is acknowledged and duly appreciated.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to D. R. E. Ewim, A. O. Adelaja or J. P. Meyer.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ewim, D.R.E., Adelaja, A.O., Onyiriuka, E.J. et al. Modelling of heat transfer coefficients during condensation inside an enhanced inclined tube. J Therm Anal Calorim 146, 103–115 (2021). https://doi.org/10.1007/s10973-020-09930-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-020-09930-2

Keywords

Navigation