Skip to main content
Log in

Influence of stearic acid and beeswax as solid lipid matrix of lipid nanoparticles containing tacrolimus

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Lipid nanoparticles, both solid lipid nanoparticles and nanostructured lipid carriers (NLC), containing tacrolimus (FK) were obtained by solvent diffusion method associated with ultrasonication using stearic acid (SA) or beeswax as solid lipid. The oleic acid was used as liquid lipid in the NLC. Lipid nanoparticles were characterized by determining the drug loading, particle size, polydispersity index (PDI) and zeta potential (ZP). Analysis by differential scanning calorimetry and X-ray diffraction were performed. Lipid nanoparticles presented nano-sized from 139 to 275 nm. The PDI results show the particles present from 0.3 to 0.5, and ZP was higher than |25| mV. Drug loading ranged of 2.3–3.2%. SA nanoparticles presented better ZP, average size and distribution. However, beeswax nanoparticles showed higher drug loading. Results suggest there are no incompatibilities between FK and the raw materials. Polymorphic modifications were not observed. The results presented show that lipid nanoparticles using both lipids were successfully obtained and may represent promising delivery system of FK in topical formulations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Jensen LB, Petersson K, Nielsen HM. In vitro penetration properties of solid lipid nanoparticles in intact and barrier-impaired skin. Eur J Pharm Biopharm. 2011;79:68–75.

    Article  CAS  PubMed  Google Scholar 

  2. Rybojad M. La dermatite atopique. Arch. Pédiatrie. 2012;19:882–5.

    Article  CAS  Google Scholar 

  3. Alomar A, Berth-Jones J, Bos JD, Giannetti A, Reitamo S, Ruzicka T, et al. The role of topical calcineurin inhibitors in atopic dermatitis. Br J Dermatol. 2004;151:3–27.

    Article  CAS  PubMed  Google Scholar 

  4. Leung DYM, Boguniewicz M, Howell MD, Nomura I, Hamid QA. New insights into atopic dermatitis. J Clin Investig. 2004;113:651–7.

    Article  CAS  PubMed  Google Scholar 

  5. Porto AC, Simão HML. Dermatite Atópica. In: Sociedade Brasileira de Pediatria, editor. Tratado Pediatr. 2nd ed. São Paulo: Sociedade Brasileira de Pediatria; 2010. p. 577–89.

    Google Scholar 

  6. Rodrigues RNS, Pires MC, Grumach AS. Macrolídeos tópicos: uma nova perspectiva para o tratamento da dermatite atópica Topical macrolides: a new perspective for the atopic dermatitis treatment. Rev Bras Alerg Imunopatol. 2004;27:70–5.

    Google Scholar 

  7. Garg V, Jain GK, Nirmal J, Kohli K. Topical tacrolimus nanoemulsion, a promising therapeutic approach for uveitis. Med Hypotheses. 2013;81:901–4.

    Article  CAS  PubMed  Google Scholar 

  8. Pople PV, Singh KK. Development and evaluation of colloidal modified nanolipid carrier: application to topical delivery of tacrolimus. Eur J Pharm Biopharm. 2011;79:82–94.

    Article  CAS  PubMed  Google Scholar 

  9. Gao S, Sun J, Fu D, Zhao H, Lan M, Gao F. Preparation, characterization and pharmacokinetic studies of tacrolimus-dimethyl-β-cyclodextrin inclusion complex-loaded albumin nanoparticles. Int J Pharm. 2012;427:410–6.

    Article  CAS  PubMed  Google Scholar 

  10. Pople PV, Singh KK. Development and evaluation of colloidal modified nanolipid carrier: application to topical delivery of tacrolimus, Part II—in vivo assessment, drug targeting, efficacy, and safety in treatment for atopic dermatitis. Eur J Pharm Biopharm. 2013;84:72–83.

    Article  CAS  PubMed  Google Scholar 

  11. Rahman Z, Siddiqui A, Bykadi S, Khan MA. Determination of tacrolimus crystalline fraction in the commercial immediate release amorphous solid dispersion products by a standardized X-ray powder diffraction method with chemometrics. Int J Pharm. 2014;475:462–70.

    Article  CAS  PubMed  Google Scholar 

  12. Zhuang C-Y, Li N, Wang M, Zhang X-N, Pan W-S, Peng J-J, et al. Preparation and characterization of vinpocetine loaded nanostructured lipid carriers (NLC) for improved oral bioavailability. Int J Pharm. 2010;394:179–85.

    Article  CAS  PubMed  Google Scholar 

  13. Montenegro L, Sinico C, Castangia I, Carbone C, Puglisi G. Idebenone-loaded solid lipid nanoparticles for drug delivery to the skin: in vitro evaluation. Int J Pharm. 2012;434:169–74.

    Article  CAS  PubMed  Google Scholar 

  14. Mehnert W, Mäder K. Solid lipid nanoparticles: production, characterization and applications. Adv Drug Deliv Rev. 2001;47:165–96.

    Article  CAS  PubMed  Google Scholar 

  15. Vaghasiya H, Kumar A, Sawant K. Development of solid lipid nanoparticles based controlled release system for topical delivery of terbinafine hydrochloride. Eur J Pharm Sci. 2013;49:311–22.

    Article  CAS  PubMed  Google Scholar 

  16. Dong Y, Ng WK, Shen S, Kim S, Tan RBH. Solid lipid nanoparticles: continuous and potential large-scale nanoprecipitation production in static mixers. Colloids Surf B Biointerfaces. 2012;94:68–72.

    Article  CAS  PubMed  Google Scholar 

  17. Zhao C, Fan T, Yang Y, Wu M, Li L, Zhou Z, et al. Preparation, macrophages targeting delivery and anti-inflammatory study of pentapeptide grafted nanostructured lipid carriers. Int J Pharm. 2013;450:11–20.

    Article  CAS  PubMed  Google Scholar 

  18. Pardeike J, Hommoss A, Müller RH. Lipid nanoparticles (SLN, NLC) in cosmetic and pharmaceutical dermal products. Int J Pharm. 2009;366:170–84.

    Article  CAS  PubMed  Google Scholar 

  19. Yuan H, Wang L-L, Du Y-Z, You J, Hu F-Q, Zeng S. Preparation and characteristics of nanostructured lipid carriers for control-releasing progesterone by melt-emulsification. Colloids Surf B Biointerfaces. 2007;60:174–9.

    Article  CAS  PubMed  Google Scholar 

  20. Weyenberg W, Filev P, Van den Plas D, Vandervoort J, De Smet K, Sollie P, et al. Cytotoxicity of submicron emulsions and solid lipid nanoparticles for dermal application. Int J Pharm. 2007;337:291–8.

    Article  CAS  PubMed  Google Scholar 

  21. Severino P, Pinho SC, Souto EB, Santana MHA. Polymorphism, crystallinity and hydrophilic–lipophilic balance of stearic acid and stearic acid–capric/caprylic triglyceride matrices for production of stable nanoparticles. Colloids Surf B Biointerfaces. 2011;86:125–30.

    Article  CAS  PubMed  Google Scholar 

  22. Wang S, Chen T, Chen R, Hu Y, Chen M, Wang Y. Emodin loaded solid lipid nanoparticles: preparation, characterization and antitumor activity studies. Int J Pharm. 2012;430:238–46.

    Article  CAS  PubMed  Google Scholar 

  23. Attama AA, Müller-Goymann CC. Effect of beeswax modification on the lipid matrix and solid lipid nanoparticle crystallinity. Colloids Surf A Physicochem Eng Asp. 2008;315:189–95.

    Article  CAS  Google Scholar 

  24. Serra Bonvehi J, Orantes Bermejo FJ. Detection of adulterated commercial Spanish beeswax. Food Chem. 2012;132:642–8.

    Article  CAS  PubMed  Google Scholar 

  25. Das S, Ng WK, Tan RBH. Are nanostructured lipid carriers (NLCs) better than solid lipid nanoparticles (SLNs): development, characterizations and comparative evaluations of clotrimazole-loaded SLNs and NLCs? Eur J Pharm Sci. 2012;47:139–51.

    Article  CAS  PubMed  Google Scholar 

  26. Almeida EDP, Costa AA, Serafini MR, Rossetti FC, Marchetti JM, Sarmento VHV, et al. Preparation and characterization of chloroaluminum phthalocyanine-loaded solid lipid nanoparticles by thermal analysis and powder X-ray diffraction techniques. J Therm Anal Calorim. 2012;108:191–6.

    Article  CAS  Google Scholar 

  27. Hu F, Yuan H, Zhang H, Fang M. Preparation of solid lipid nanoparticles with clobetasol propionate by a novel solvent diffusion method in aqueous system and physicochemical characterization. Int J Pharm. 2002;239:121–8.

    Article  CAS  PubMed  Google Scholar 

  28. Martins S, Costa-Lima S, Carneiro T, Cordeiro-da-Silva A, Souto EB, Ferreira DC. Solid lipid nanoparticles as intracellular drug transporters: an investigation of the uptake mechanism and pathway. Int J Pharm. 2012;430:216–27.

    Article  CAS  PubMed  Google Scholar 

  29. Zheng M, Falkeborg M, Zheng Y, Yang T, Xu X. Formulation and characterization of nanostructured lipid carriers containing a mixed lipids core. Colloids Surf A Physicochem Eng Asp. 2013;430:76–84.

    Article  CAS  Google Scholar 

  30. Hu F-Q, Jiang S-P, Du Y-Z, Yuan H, Ye Y-Q, Zeng S. Preparation and characterization of stearic acid nanostructured lipid carriers by solvent diffusion method in an aqueous system. Colloids Surf B Biointerfaces. 2005;45:167–73.

    Article  CAS  PubMed  Google Scholar 

  31. Tiwari R, Pathak K. Nanostructured lipid carrier versus solid lipid nanoparticles of simvastatin: comparative analysis of characteristics, pharmacokinetics and tissue uptake. Int J Pharm. 2011;415:232–43.

    Article  CAS  PubMed  Google Scholar 

  32. Garg A, Singh S. Enhancement in antifungal activity of eugenol in immunosuppressed rats through lipid nanocarriers. Colloids Surf B Biointerfaces. 2011;87:280–8.

    Article  CAS  PubMed  Google Scholar 

  33. Uprit S, Kumar Sahu R, Roy A, Pare A. Preparation and characterization of minoxidil loaded nanostructured lipid carrier gel for effective treatment of alopecia. Saudi Pharm J. 2013;21:379–85.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Han F, Li S, Yin R, Liu H, Xu L. Effect of surfactants on the formation and characterization of a new type of colloidal drug delivery system: nanostructured lipid carriers. Colloids Surf A Physicochem Eng Asp. 2008;315:210–6.

    Article  CAS  Google Scholar 

  35. Marcato PDD. Preparação, caracterização e aplicações em fármacos e cosméticos de nanopartículas lipídicas sólidas. Rev. Eletrônica Farmácia [Internet]. 2009; 6. http://www.revistas.ufg.br/index.php/REF/article/view/6545.

  36. Galvão JG, Trindade GGG, Santos AJ, Santos RL, Chaves Filho AB, Lira AAM, et al. Effect of Ouratea sp. butter in the crystallinity of solid lipids used in nanostructured lipid carriers (NLCs). J Therm Anal Calorim. 2016;123:941–8.

    Article  CAS  Google Scholar 

  37. Carvalho ALM, da Silva JA, Lira AAM, Conceição TMF, de Nunes RS, de Albuquerque Junior RLC, et al. Evaluation of microemulsion and lamellar liquid crystalline systems for transdermal zidovudine delivery. J Pharm Sci. 2016;105:2188–93.

    Article  CAS  PubMed  Google Scholar 

  38. Silva LAD, Teixeira FV, Serpa RC, Esteves NL, dos Santos RR, Lima EM, et al. Evaluation of carvedilol compatibility with lipid excipients for the development of lipid-based drug delivery systems. J Therm Anal Calorim. 2016;123:2337–44.

    Article  CAS  Google Scholar 

  39. Kumar N, Goindi S, Saini B, Bansal G. Thermal characterization and compatibility studies of itraconazole and excipients for development of solid lipid nanoparticles. J Therm Anal Calorim. 2014;115:2375–83.

    Article  CAS  Google Scholar 

  40. Laura C, Milena S, Giovanna B, Cristina BM, Giuseppina S, Giampiero B. Characterization of silver sulfadiazine-loaded solid lipid nanoparticles by thermal analysis. J Therm Anal Calorim. 2013;111:2149–55.

    Article  CAS  Google Scholar 

  41. Garti N, Sarig S, Wellner E. Determination of the composition of mixtures of fatty acid polymorphs by DTA. Thermochim Acta. 1980;37:131–6.

    Article  CAS  Google Scholar 

  42. Aquilano D, Cavalli R, Gasco MR. Solid lipospheres obtained from hot microemulsions in the presence of different concentrations of cosurfactant: the crystallization of stearic acid polymorphs. Thermochim Acta. 1993;230:29–37.

    Article  CAS  Google Scholar 

  43. Lira AAM, Nanclares DMA, Neto AF, Marchetti JM. Drug–polymer interaction in the all-trans retinoic acid release from chitosan microparticles. J Therm Anal Calorim. 2007;87:899–903.

    Article  CAS  Google Scholar 

  44. Lira AM, Araújo AAS, Basílio IDJ, Santos BLL, Santana DP, Macedo RO. Compatibility studies of lapachol with pharmaceutical excipients for the development of topical formulations. Thermochim Acta. 2007;457:1–6.

    Article  CAS  Google Scholar 

  45. Kaur A, Goindi S, Katare OP. Thermal analysis and quantitative characterization of compatibility between diflunisal and lipid excipients as raw materials for development of solid lipid nanoparticles. Thermochim Acta. 2016;643:23–32.

    Article  CAS  Google Scholar 

  46. Weber S, Zimmer A, Pardeike J. Solid lipid nanoparticles (SLN) and nanostructured lipid carriers (NLC) for pulmonary application: a review of the state of the art. Eur J Pharm Biopharm. 2014;86:7–22.

    Article  CAS  PubMed  Google Scholar 

  47. Shin S-B, Cho H-Y, Kim D-D, Choi H-G, Lee Y-B. Preparation and evaluation of tacrolimus-loaded nanoparticles for lymphatic delivery. Eur J Pharm Biopharm. 2010;74:164–71.

    Article  CAS  PubMed  Google Scholar 

  48. Joe JH, Lee WM, Park Y-J, Joe KH, Oh DH, Seo YG, et al. Effect of the solid-dispersion method on the solubility and crystalline property of tacrolimus. Int J Pharm. 2010;395:161–6.

    Article  CAS  PubMed  Google Scholar 

  49. Siddiqui A, Rahman Z, Bykadi S, Khan MA. Chemometric methods for the quantification of crystalline tacrolimus in solid dispersion by powder X-ray diffractrometry. J Pharm Sci. 2014;103:2819–28.

    Article  CAS  PubMed  Google Scholar 

  50. Jena SK, Singh C, Dora CP, Suresh S. Development of tamoxifen-phospholipid complex: novel approach for improving solubility and bioavailability. Int J Pharm. 2014;473:1–9.

    Article  CAS  PubMed  Google Scholar 

  51. Salminen H, Helgason T, Aulbach S, Kristinsson B, Kristbergsson K, Weiss J. Influence of co-surfactants on crystallization and stability of solid lipid nanoparticles. J Colloid Interface Sci. 2014;426:256–63. http://www.ncbi.nlm.nih.gov/pubmed/24863791.

  52. Fang J-Y, Fang C-L, Liu C-H, Su Y-H. Lipid nanoparticles as vehicles for topical psoralen delivery: solid lipid nanoparticles (SLN) versus nanostructured lipid carriers (NLC). Eur J Pharm Biopharm. 2008;70:633–40.

    Article  CAS  PubMed  Google Scholar 

  53. Yamashita K, Nakate T, Okimoto K, Ohike A, Tokunaga Y, Ibuki R, et al. Establishment of new preparation method for solid dispersion formulation of tacrolimus. Int J Pharm. 2003;267:79–91.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq, Brazil) for the scholarship and the Centro Multiusuário de Nanotecnologia da UFS (CMNano-UFS, Brazil) for the TEM analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ana Amélia M. Lira.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dantas, I.L., Bastos, K.T.S., Machado, M. et al. Influence of stearic acid and beeswax as solid lipid matrix of lipid nanoparticles containing tacrolimus. J Therm Anal Calorim 132, 1557–1566 (2018). https://doi.org/10.1007/s10973-018-7072-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-018-7072-7

Keywords

Navigation