Skip to main content
Log in

New Schiff bases derived from benzyl carbazate with alkyl and heteroaryl ketones

Isolation, structural characterization, thermal behavior and molecular docking studies

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

The condensation reaction of benzyl carbazate with the ketones, viz., dimethylketone, dipropylketone, cyclobutanone, cyclopentanone, cyclohexanone, cycloheptanone, 2-acetylpyridine, 3-acetylpyridine and 4-acetylpyridine, yielded the Schiff bases [benzyl 2-(propan-2-ylidene)hydrazinecarboxylate (1), benzyl 2-(heptan-4-ylidene)hydrazinecarboxylate (2), benzyl 2-(cyclobutanylidene)hydrazinecarboxylate (3), benzyl 2-(cyclopentnylidene)hydrazinecarboxylate (4), benzyl 2-(cyclohexanylidene)hydrazinecarboxylate (5), benzyl 2-(cycloheptanylidene)hydrazinecarboxylate (6), benzyl 2-(1-(pyridine-2-yl) ethylidene)hydrazinecarboxylate (7), benzyl 2-(1-(pyridine-3-yl) ethylidene)hydrazinecarboxylate (8) and benzyl 2-(1-(pyridine-4-yl) ethylidene)hydrazinecarboxylate (9)], respectively. These were all characterized by elemental analysis, FT-IR and NMR (1H and 13C) spectroscopic methods, and in addition, the structures of compounds 4, 8 and 9 have been confirmed by single-crystal X-ray diffraction studies, and their crystal structures are shown to be stabilized by hydrogen bonding. The thermal properties of all the Schiff bases have been studied in air and all of them underwent melting followed by endo- and exothermic decomposition processes to yield an ethanimine (CH3–CH=NH) intermediate which in turn decomposes exothermically to give gaseous products. In a nitrogen atmosphere, these compounds also show similar thermal behavior but with the absence of an intermediate. A docking study of compounds 2, 4 and 9 with human BChE provides useful structural information on their inhibition properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Braibanti A, Dallavalle F, Pellinghelli MA, Leporati E. The nitrogen-nitrogen stretching band in hydrazine derivatives and complexes. Inorg Chem. 1968;7:1430–3.

    Article  CAS  Google Scholar 

  2. Yasodhai S, Govindarajan S. Preparation and thermal behaviour of some hydrazinium dicarboxylates. Thermochim Acta. 1999;338:113–23.

    Article  CAS  Google Scholar 

  3. Yasodhai S, Govindarajan S. Hydrazinium oxydiacetates and oxydiacetate dianion complexes of some divalent metals with hydrazine. J Therm Anal Calorim. 2000;62:737–45.

    Article  CAS  Google Scholar 

  4. Kuppusamy K, Sivasankar BN, Govindarajan S. Preparation, characterisation and thermal properties of some new hydrazinium carboxylates. Thermochim Acta. 1995;259:251–62.

    Article  CAS  Google Scholar 

  5. Vairam S, Govindarajan S. New hydrazinium salts of benzene tricarboxylic and tetracarboxylic acids-preparation and their thermal studies. Thermochim Acta. 2004;414:263–70.

    Article  CAS  Google Scholar 

  6. Saravanan K, Govindarajan S. Preparation and thermal reactivity of hydrazinium 2, n-pyridinedicarboxylates (n = 3, 4, 5 and 6). J Therm Anal Calorim. 2003;73:951–9.

    Article  CAS  Google Scholar 

  7. Premkumar T, Govindarajan S, Pan W-P. Preparation, spectral and thermal studies of pyrazinecarboxylic acids and their hydrazinium salts. Proc Indian Acad Sci (Chem Sci). 2003;115:103–11.

    Article  CAS  Google Scholar 

  8. Kumar VSS, Premkumar T, Rath NP, Govindarajan S. Polymorphism in hydrazinium salt of 3, 5-pyrazoledicarboxylic acid. Indian J Chem. 2007;B46:141–7.

    Google Scholar 

  9. Packiaraj S, Pushpaveni A, Senthil C, Govindarajan S, Rawson JM. Preparation, thermal behavior, luminescent properties, and crystal structures of aminoguanidinium 2, n-pyridinedicarboxylate (n 5 3, 4, 5, and 6) salts. J Therm Anal Calorim. 2015;119:15–25.

    Article  CAS  Google Scholar 

  10. Premkumar T, Srinivasan K, Selvakumar R, Rath NP, Govindarajan S. Synthesis, crystal structure, spectroscopic and thermal analysis of hydrazinium hydrogen-3,5-pyrazoledicarboxylate monohydrate. J Therm Anal Calorim. 2016;125:1–9.

    Article  CAS  Google Scholar 

  11. Packiaraj S, Pushpaveni A, Govindarajan S, Rawson JM. Structural and anti-oxidant properties of guanidinium pyrazole-3,5-dicarboxylates. Cryst Eng Comm. 2016;18:7978–93.

    Article  CAS  Google Scholar 

  12. Osinski AJ, Hough BA, Crandall LA, Tamgho IS, Ziegler CJ. Complexes of 2, 6-diacetylpyridine dihydrazone with middle and late first row transition metals. Inorg Chem Commun. 2015;59:76–9.

    Article  CAS  Google Scholar 

  13. Barros-García FJ, Bernalte-García A, Luna-Giles F, Maldonado-Rogado MA, Viñuelas-Zahínos E. Preparation, characterization and X-ray structure determinations of the 2-acetyl-2-thiazoline Schiff base of hydrazine (ATH) and its cadmium(II) complex [Cd(NO3)2(ATH)2]. Polyhedron. 2005;24:1125–32.

    Article  Google Scholar 

  14. Ma G, Zhang T, Yu K. Synthesis, X-ray crystal structure and thermal decomposition mechanism of [Zn(MCZ)3](NO3)2.H2O (MCZ = methyl carbazate). J Braz Chem Soc. 2005;16:796–800.

    Article  CAS  Google Scholar 

  15. Tong W-C, Liu J-C, Wang Q-Y, Yang L, Zhang T-L. Eco-friendly trifoliate stable energetic zinc nitrate coordination compounds: synthesis, structures, thermal and explosive properties. Z Anorg Allg Chem. 2014;640:2991–7.

    Article  CAS  Google Scholar 

  16. Zhang TL, Song JC, Zhang JG, Ma GX, Yu KB. Syntheses, crystal structures and thermal stability of Co(II) and Zn(II) complexes with ethyl carbazate. Z Naturforsch. 2005;60B:505–10.

    Google Scholar 

  17. Srinivasan K, Govindarajan S, Harrison WTA. Redetermination of tris(ethyl carbazate κ2N, O)cobalt(II) dinitrate. Acta Crystallogr. 2007;E63:m3028–9.

    Google Scholar 

  18. Srinivasan K, Govindarajan S, Harrison WTA. Tris(ethyl carbazate-κ2N, O)nickel(II)dinitrate. Acta Crystallogr. 2008;E64:m222–3.

    Google Scholar 

  19. Srinivasan K, Govindarajan S, Harrison WTA. A family of double-layered octahedral coordination networks built up from divalent metal ions, formate anions, and ethyl carbazate ligands: M(CHO2)2(C3H8N2O2) (M=Co, Zn, Cd). J Coord Chem. 2011;64:3541–50.

    Article  CAS  Google Scholar 

  20. Kathiresan A, Srinivasan K, Brinda S, Nethaji M, Govindarajan S. Synthesis and characterization of cobalt(II), nickel(II), copper(II) and zinc(II) complexes of -nitrobenzoic acid with methyl carbazate as ancillary ligand. Crystal structure of the copper(II) complex. Trans Met Chem. 2012;37:393–7.

    Article  CAS  Google Scholar 

  21. Srinivasan K, Kathiresan A, Govindarajan S, Aughey JT, Harrison WTA. A family of double-layered coordination polymers containing Cd2+, N, O-chelating ligands, and bridging SCN- and Cl. J Coord Chem. 2014;67:857–69.

    Article  CAS  Google Scholar 

  22. Srinivasan K, Kathiresan A, Harrison WTA, Govindarajan S. Syntheses and coordination isomerism of heteroleptic divalent-metal (M=Co, Zn) carbazate complexes. J Coord Chem. 2014;67:3324–34.

    Article  CAS  Google Scholar 

  23. Lv L-P, Liu S. (E)-Methyl 3-(3, 5-dibromo-2-hydroxybenzylidene) carbazate. Acta Crystallogr. 2010;E66:o2405.

    Google Scholar 

  24. Sheng L-Q, Xu H-J, Du N-N, Jiang X-Y. Methyl 3-[(E)-(2-hydroxy-1-naphthyl) methylidene] carbazate. Acta Crystallogr. 2010;E66:o3046.

    Google Scholar 

  25. Li Y-F, Liu H-X, Jian F-F. Ethyl 3-[1-(4-bromophenyl) ethylidene] carbazate. Acta Crystallogr. 2009;E65:o2938.

    Google Scholar 

  26. Li Y-F, Liu H-X, Jian F-F. Methyl 3-(3-pyridylmethylene) carbazate. Acta Crystallogr. 2009;E65:o2959.

    Google Scholar 

  27. Li Y-F. Methyl 3-(2-furylmethylidene) carbazate. Acta Crystallogr. 2011;E67:o64.

    Google Scholar 

  28. Li Y-F, Zhang F-G, Jian F-F. Methyl 3-(4-methylbenzylidene) carbazate. Acta Crystallogr. 2010;E66:o1429.

    Google Scholar 

  29. Li Y-F, Liu H-X, Jian F-F. Ethyl 3-(2, 4-dichloro-benzylidene) carbazate. Acta Crystallogr. 2009;E65:o2919.

    Google Scholar 

  30. Li Y-F, Sheng W-H, Jian F-F. Ethyl 3-(4-methylbenzylidene) carbazate. Acta Crystallogr. 2010;E66:o1565.

    Google Scholar 

  31. Li Y-F, Liu H-X, Jian F-F. Ethyl 3-[1-(2-hydroxyphenyl) ethylidene] carbazate. Acta Crystallogr. 2009;E65:o2935.

    Google Scholar 

  32. Arfaoui Y, Kouass S, Salah N, Akacha AB, Guesmi A. Ethyl 3-[1-(5, 5-dimethyl-2-oxo-1, 3, 2-dioxaphosphorin-2-yl) propan-2-ylidene] carbazate: a combined X-ray and density functional theory (DFT) study. Acta Crystallogr C. 2010;66:o353–5.

    Article  CAS  Google Scholar 

  33. Côbeljić B, Pevec A, Turel I, Swart M, Mitić D, Milenković M, Marković I, Jovanović M, Sladić D, Jeremić M, Delkovic KA. Synthesis, characterization, DFT calculations and biological activity of derivatives of 3-acetylpyridine and the zinc(II) complex with the condensation product of 3-acetylpyridine and semicarbazide. Inorg Chim Acta. 2013;404:5–12.

    Article  Google Scholar 

  34. Jeffery GH, Bassett J, Mendham J, Denney RC. Vogel’s textbook of quantitative chemical analysis. 5th ed. New York: Wiley; 1989.

    Google Scholar 

  35. Bruker APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA; 2011.

  36. Sheldrick GM. A short history of SHELX. Acta Crystallogr A. 2008;64:112–22.

    Article  CAS  Google Scholar 

  37. Sheldrick GM. Crystal structure refinement with SHELXL. Acta Crystallogr. 2015;C71:3–8.

    Google Scholar 

  38. Hunter KA, Simpson J. TITAN 2000. New Zealand: University of Otago; 1999.

    Google Scholar 

  39. Macrae CF, Bruno IJ, Chisholm JA, Edgington PR, McCabe P, Pidcock E, Rodriguez-Monge L, Taylor R, van de Streek J, Wood PA. Mercury CSD 2.0-new features for the visualization and investigation of crystal structures. J Appl Crystallogr. 2008;41:466–70.

    Article  CAS  Google Scholar 

  40. Spek AL. Structure validation in chemical crystallography. Acta Crystallogr. 2009;D65:148–55.

    Google Scholar 

  41. Farrugia LJ. WinGX and ORTEP for windows: an update. J Appl Crystallogr. 2012;40:849–54.

    Article  Google Scholar 

  42. Morris GM, Huey R, Lindstrom W, Sanner MF, Belew RK, Goodsell DS, Olson AJ. Autodock4 and autodocktools4: automated docking with selective receptor flexibility. J Comput Chem. 2009;30:2785–91.

    Article  CAS  Google Scholar 

  43. Bernstein J, Davis RE, Shimoni L, Chang N-L. Patterns in hydrogen bonding: functionality and graph set analysis in crystals. Angew Chem Int Ed Engl. 1995;34:1555–73.

    Article  CAS  Google Scholar 

  44. Janiak CA. Critical account on π–π stacking in metal complexes with aromatic nitrogen-containing ligands. J Chem Soc Dalton Trans. 2000; 3885–96.

  45. Dorn T, Janiak C, Abu-Shandi K. Hydrogen-bonding, π-stacking and Cl anion-π interactions of linear bipyridinium cations with phosphate, chloride and [CoCl4]2− anions. Cryst Eng Comm. 2005;7:633–41.

    Article  CAS  Google Scholar 

  46. Savini L, Gaeta A, Fattorusso C, Catalanotti B, Campiani G, Chiasserini L, Pellerano C, Novellino E, McKissic D, Saxena A. Specific targeting of acetylcholinesterase and butyrylcholinesterase recognition sites. rational design of novel, selective, and highly potent cholinesterase inhibitors. J Med Chem. 2003;46:1–4.

    Article  CAS  Google Scholar 

  47. Harel M, Sussman JL, Krejci E, Bon S, Chanal P, Massoulie J, Silman I. Conversion of acetylcholinesterase to butyrylcholinesterase: modeling and mutagenesis. Proc Natl Acad Sci USA. 1992;89:10827–31.

    Article  CAS  Google Scholar 

  48. Sussman JL, Harel M, Frolow F, Oefner C, Goldman A, Toker L, Silman I. Atomic-structure of acetylcholinesterase from Torpedo californicas A prototypic acetylcholine-binding protein. Science. 1991;253:872–9.

    Article  CAS  Google Scholar 

  49. Nachon F, Nicolet Y, Viguie N, Masson P, Fontecilla-Camps JC, Lockridge O. Engineering of a monomeric and low glycosylated form of human butyrylcholinesterase: expression, purification, characterization and crystallization. Eur J Biochem. 2002;269:630–7.

    Article  CAS  Google Scholar 

  50. Lenz DE, Yeung D, Smith JR, Sweeney RE, Lumley LA, Cerasoli DM. Toxicology. 2007;233:31–9.

    Article  CAS  Google Scholar 

  51. Saeed A, Mahesar PA, Zaib S, Khan MS, Matin A, Shahid M, Iqbal J. Synthesis, cytotoxicity and molecular modelling studies of new phenyl cinnamide derivatives as potent inhibitors of cholinesterases. Eur J Med Chem. 2014;78:43–53.

    Article  CAS  Google Scholar 

  52. Šekutor M, Majerski KM, Hrenar T, Tomić S, Primožič I. Adamantane-substituted guanylhydrazones: novel inhibitors of butyrylcholinesterase. Bioorg Chem. 2012;41–42:28–34.

    Article  Google Scholar 

  53. Selvakumar R, Geib SJ, Sankar AM, Premkumar T, Govindarajan S. The chemistry of aminoguanidine derivatives-preparation, crystal structure, thermal properties, and molecular docking studies of aminoguanidinium salts of several carboxylic acids. J Phys Chem Solids. 2015;86:49–56.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

P. Nithya acknowledges University Grant Commission (UGC-SAP), New Delhi, for the award of BSR—Senior Research Fellowship. We thank the University of Otago for the purchase of the diffractometer, and the Chemistry Department, University of Otago, for the support of the work of JS. Our sincere thanks go to the SIF, VIT University, Vellore, for providing access to their NMR spectral facilities. COE-AMGT, Amrita Vishwa Vidyapeetham University, Coimbatore, is gratefully acknowledged for permitting us to record the TG–DTA under a nitrogen atmosphere.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Subbiah Govindarajan.

Electronic supplementary material

Below is the link to the electronic supplementary material.

10973_2017_6205_MOESM1_ESM.doc

Supplementary material 1 Crystallographic data for the structures reported in this paper have been deposited with the Cambridge Crystallographic Data Centre (CCDC) as supplementary publication number CCDC- 1455910-1455912. Copies of the data can be obtained free of charge from the CCDC (12 Union Road, Cambridge CB2 1EZ, UK; Tel.: +44-1223-336408; Fax: +44-1223-336003; e-mail: deposit@ccdc.cam.ac.uk; Web site http://www.ccdc.cam.ac.UK) (DOC 2532 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nithya, P., Simpson, J., Helena, S. et al. New Schiff bases derived from benzyl carbazate with alkyl and heteroaryl ketones. J Therm Anal Calorim 129, 1001–1019 (2017). https://doi.org/10.1007/s10973-017-6205-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-017-6205-8

Keywords

Navigation