Skip to main content
Log in

Thermal and morphological study of chitosan metal complexes

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

The synthesis of chitosan Schiff bases, N-benzylidene chitosan (CTB), 4-dimethylamino-benzylidene chitosan (CTDB) and 4-nitro-benzylidene chitosan (CTNB), and their interaction with Cu2+, Zn2+ and Ni2+ were studied. The content of metal ions was determined by atomic absorption spectrometry, and the results showed that chitosan exhibited higher chelating capacity for the metal ions. Morphological changes of Schiff bases and complexes were demonstrated by SEM images. The presence of crystals attributed to copper sulfate adsorbed on the polymers surface was also observed, which indicates that part of the metal content is in the salt adsorbed and might influence in their further application studies. X-ray diffraction patterns showed that the formation of complexes resulted in the decrease in crystallinity. The thermal behavior of derivative and metal complexes were studied by thermogravimetric analysis, differential thermogravimetric analysis and differential scanning calorimetry. The results showed that the presence of new groups and metal ions bonded to chitosan affected their thermal stability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Varma AJ, Deshpande SV, Kennedy JF. Metal complexation by chitosan and its derivative: a review. Carbohydr Polym. 2004;55:77–93.

    Article  CAS  Google Scholar 

  2. Gomes P, Gomes CAR, Batista MKS, Pinto LF, Silva PAP. Novel highly-soluble peptide–chitosan polymers: chemical synthesis and spectral characterization. Carbohydr Polym. 2008;71:54–65.

    Article  CAS  Google Scholar 

  3. Aiping Z, Jianhong L, Wenhui Y. Effective loading and controlled release of camptothecin by O-carboxymethylchitosan aggregates. Carbohydr Polym. 2006;63:89–96.

    Article  Google Scholar 

  4. Soliman EA, El-Kousy SM, Abd-Elbary HM, Abou-zeid AR. Low molecular weight chitosan-based Schiff bases: synthesis, characterization and antimicrobial activity. Am J Food Technol. 2013;8:17–30.

    Article  CAS  Google Scholar 

  5. Sajomsang W, Tantayanon S, Tangpasuthadol V, Thatte M, Daly WH. Synthesis and characterization of N-aryl chitosan derivatives. Int J Biol Macromolec. 2008;43:79–87.

    Article  CAS  Google Scholar 

  6. Tirkistani FAA. Thermal analysis of some chitosan Schiff base. Polym Degrad Stabil. 1998;60:67–70.

    Article  CAS  Google Scholar 

  7. Yin X, Chen J, Yuan W, Lin Q, Ji L, Liu F. Preparation and antibacterial activity of Schiff bases from O-carboxymethyl chitosan and para-substituted benzaldehydes. Polym Bull. 2012;68:1215–26.

    Article  CAS  Google Scholar 

  8. Lal S, Arora S, Sharma C. Synthesis, thermal and antimicrobial studies of some Schiff bases of chitosan. J Therm Anal Calorim. 2016;124:909–16.

    Article  CAS  Google Scholar 

  9. Jiao T, Zhao H, Zhou J, Zhang Q, Luo X, Hu J, Peng Q, Yan X. Self-assembly reduced graphene oxide nanosheet hydrogel fabrication by anchorage of chitosan/silver and its potential efficient application toward dye degradation for wastewater treatments. ACS Sustain Chem Eng. 2015;12:3130–9.

    Article  Google Scholar 

  10. Zhao H, Jiao T, Zhang L, Zhou J, Zhang Q, Peng Q, Yan X. Preparation and adsorption capacity evaluation of graphene oxide-chitosan composite hydrogels. Sci China Mater. 2015;58:811–8.

    Article  CAS  Google Scholar 

  11. Mohamed RR, Fekry AM. Antimicrobial and anticorrosive activity of adsorbents based on chitosan Schiff’s base. Int J Electrochem Sci. 2011;6:2488–508.

    CAS  Google Scholar 

  12. Gavalyan VB. Synthesis and characterization of new chitosan-based Schiff base compounds. Carbohydr Polym. 2016;145:37–47.

    Article  CAS  Google Scholar 

  13. Tong JH, Li Z, Xia CG. Highly efficient catalysts of chitosan-Schiff base Co(II) and Pd(II) complexes for aerobic oxidation of cyclohexane in the absence of reductants and solvents. J Mol Catal A: Chem. 2005;231:197–203.

    Article  CAS  Google Scholar 

  14. Leonhardt SES, Stolle A, Ondruschka B, Cravotto G, De Leo C, Jandt KD, Keller TF. Chitosan as a support for heterogeneous Pd catalysts in liquid phase catalysis. Appl Catal A Gen. 2010;379:30–7.

    Article  CAS  Google Scholar 

  15. Parrey IR, Bhat AR, Hashmi AA. Catalytic activity of benzyl alcohol using modified chitosan schiff base Cu(II) metal complex. Int J Sci Eng Res. 2014;10:829–33.

    Google Scholar 

  16. Vadivel T, Dhamodaran M, Singaram K. Antibacterial activities of palladium (II) complexes derived from chitosan biopolymer Schiff base. J Bacteriol Mycol. 2015;2:1018–22.

    Google Scholar 

  17. Anan NA, Hassan SM, Saad EM, Butler IS, Mostafa IS. Preparation, characterization and pH-metric measurements of 4-hydroxysalicylidenechitosan Schiff-base complexes of Fe(III), Co(II), Ni(II), Cu(II), Zn(II), Ru(III), Rh(III), Pd(II) and Au(III). Carbohydr Res. 2011;346:775–93.

    Article  CAS  Google Scholar 

  18. Krishnapriya KR, Kandaswamy M. A new chitosan biopolymer derivative as metal-complexing agent: synthesis, characterization, and metal(II) ion adsorption studies. Carbohydr Polym. 2010;345:2013–22.

    Article  CAS  Google Scholar 

  19. Jiao T, Zhou J, Zhou J, Gao L, Xing Y, Li X. Synthesis and characterization of chitosan-based Schiff Base compounds with aromatic substituent groups. Iran Polym J. 2011;20:123–36.

    CAS  Google Scholar 

  20. Thatte CS, Rathnam MV, Pise AC. Chitosan-based Schiff base-metal complexes (Mn, Cu, Co) as heterogeneous, new catalysts for the β-isophorone oxidation. J Chem Sci. 2014;126:727–37.

    Article  CAS  Google Scholar 

  21. Antony R, David ST, Saravanan K, Karuppasamy K, Balakumar S. Synthesis, spectrochemical characterisation and catalytic activity of transition metal complexes derived from Schiff base modified chitosan. Spectrochim Acta Mol Biomol Spectrosc. 2013;103:423–30.

    Article  CAS  Google Scholar 

  22. Salama HE, Saad GR, Sabaa MW. Synthesis, characterization and biological activity of Schiff bases based on chitosan and arylpyrazole moiety. Int J Biol Macromol. 2015;79:996–1003.

    Article  CAS  Google Scholar 

  23. Mohammad RK. The use of various types of NMR and IR spectroscopy for structural characterization of chitin and chitosan. Chitin, chitosan, oligosaccharides and their derivatives, biological activities and applications, EUA, chapter 12; 2011.

  24. Young DH, Kauss H. Release of calcium from suspension-cultured Glycine max cells by chitosan, other polycations, and polyamines in relation to effects on membrane permeability. Plant Physiol. 1983;73:698–702.

    Article  CAS  Google Scholar 

  25. Rinaudo M. Chitin and chitosan: properties and applications. Prog Polym Sci. 2006;31:603–32.

    Article  CAS  Google Scholar 

  26. Kurita K, Sannan T, Iwakura Y. Studies on chitin. VI. Binding of metal cations. J Appl Polym Sci. 1979;23:511–5.

    Article  CAS  Google Scholar 

  27. Zawadzki J, Kaczmarek H. Thermal treatment of chitosan in various conditions. Carbohydr Polym. 2010;80:394–400.

    Article  CAS  Google Scholar 

  28. Pereira FS, da Agostini DLS, Job AE, González ERP. Thermal studies of chitin–chitosan derivatives. J Therm Anal Calorim. 2013;114:321–7.

    Article  CAS  Google Scholar 

  29. Tang WJ, Wang CX, Donghua C. Kinetic studies on the pyrolysis of chitin and chitosan. Polym Degrad Stab. 2005;87:389–94.

    Article  CAS  Google Scholar 

  30. Sreenivasan K. Thermal stability studies of some chitosan metal ion complexes using differential scanning calorimetry. Polym Degrad Stab. 1996;52:85–7.

    Article  CAS  Google Scholar 

  31. Sashikala S, Shafi SS. Synthesis, Characterization and Antimicrobial activity of chitosan 4-chlorobenzaldehyde Schiff base. Res J Chem Sci. 2015;5:27–33.

    CAS  Google Scholar 

  32. Koll P, Borchers G, Metzger JO. Thermal degradation of chitin and cellulose. J Anal Appl Pyrolysis. 1991;19:119–29.

    Article  Google Scholar 

  33. Mathew S, Brahmakumar M, Abraham TE. Microstructural imaging and characterization of the mechanical, chemical, thermal, and swelling properties of starch-chitosan blend films. Biopolymers. 2006;82:176–87.

    Article  CAS  Google Scholar 

  34. Pereira FS, Souza GG, Moraes PGP, Barroso RP, Lanfredi S, Gomes HM, Costa-Filho AJ, González ERP. Study of chitosans interaction with Cu(II) from the corresponding sulfate and chloride salts. Cellulose. 2015;22:2391–407.

    Article  CAS  Google Scholar 

  35. Haas LK, Franz JK. Application of metal coordination chemistry to explore and manipulate cell biology. Chem Rev. 2009;109:4921–60.

    Article  CAS  Google Scholar 

  36. Li-xia W, Zi-wei W, Guo-song W, Xiao-dong L, Jian-guo R. Catalytic performance of chitosan-Schiff base supported Pd/Co bimetallic catalyst for acrylamide with phenyl halide. Polym Adv Technol. 2010;21:244–9.

    Google Scholar 

  37. Focher B, Beltrame PL, Naggi A, Torri G. Alkaline N-deacetylation of chitin enhanced by flash treatments. reaction kinetics and structure modification. Carbohydr Polym. 1990;12:405–18.

    Article  CAS  Google Scholar 

  38. Jeon C, Höll WH. Chemical modification of chitosan and equilibrium study for mercury ion removal. Water Res. 2003;37:4770–80.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors gratefully thank Fundação de Apoio a Pesquisa do Estado de São Paulo (FAPESP), 2012/13901-3, 2013/26576-6 fellowships and research fund 2013/24487-6. The authors thank Élton J. Souza and Glenda Gonçalves de Souza for scanning electron microscopy analyses.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eduardo René Pérez González.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 6475 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pereira, F.S., Lanfredi, S., González, E.R.P. et al. Thermal and morphological study of chitosan metal complexes. J Therm Anal Calorim 129, 291–301 (2017). https://doi.org/10.1007/s10973-017-6146-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-017-6146-2

Keywords

Navigation