Skip to main content
Log in

Applying thermodynamics to digestion/gasification processes: the Attainable Region approach

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

The research shows theoretical calculations on the thermodynamics of digestion/gasification processes where glucose is used as a surrogate for biomass. The change in Enthalpy (∆H) and Gibbs Free Energy (∆G) is used to obtain the Attainable Region (AR) that shows the overall thermodynamic limits for digestion/gasification from 1 mol of glucose. Gibbs Free Energy and Enthalpy (GH) plots were calculated for the temperature range 25–1500 °C. The results show the effect of temperature on the AR for the processes when water is in both liquid and gas states using 25 °C, 1 bar as the reference state. The AR results show that the production of CO, H2, CH4 and CO2 are feasible at all temperatures studied. The minimum Gibbs Free Energy becomes more negative from −418.68 kJ mol−1 at 25 °C to −3024.34 kJ mol−1 at 1500 °C while the process shifts from exothermic (−141.90 kJ mol−1) to endothermic (1161.80 kJ mol−1) for the respective temperatures. Methane and carbon dioxide are favoured products (minimum Gibbs Free Energy) for temperatures up to about 600 °C, and this therefore includes Anaerobic Digestion. The process is exothermic below 500 °C, and thus Anaerobic Digestion requires heat removal. As the temperature continues to increase, hydrogen production becomes more favourable than methane production. The production of gas is endothermic above 500 °C, and it needs a supply of heat that could be done, either by combustion or by electricity (plasma gasification). The calculations show that glucose conversion at temperatures around 700 °C favours the production of carbon dioxide and hydrogen at minimum G. Generally, the results show that the gas from high-temperature gasification (>~800 °C) typically carries the energy mainly in syngas components CO and H2, whereas at low-temperature gasification (<500 °C) the energy is carried in CH4. The overall analysis for the temperature range (25–1500 °C) also suggests a close relationship between biogas production/digestion and gasification as biogas production can be referred to as a form of low-temperature gasification.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Abbreviations

AR:

Attainable Region

WGS:

Water gas shift

GH :

Gibbs Free Energy–Enthalpy

ε :

Extent of reaction

T :

Temperature

T o :

Reference temperature

\(\Delta H^{^\circ }\) :

Heat of formation at T

\(\Delta Ho^{^\circ }\) :

Heat of formation at T o

References

  1. Heberlein J, Murphy A. Thermal plasma waste treatment. J Phys D Appl Phys. 2008;41:1–19.

    Article  Google Scholar 

  2. Evangelisti S, Tagliaferri C, Clift R, Lettieri P, Taylor R, Chapman C. Integrated gasification and plasma cleaning for waste treatment: a life cycle perspective. Waste Manag. 2015;43:485–96.

    Article  CAS  Google Scholar 

  3. Plis A, Kotyczka-Moran´ska M, Kopczyn´ski M, Łabojko G. Furniture wood waste as a potential renewable energy source, a thermogravimetric and kinetic analysis. J Therm Anal Calorim. 2016;125:1357–71.

    Article  CAS  Google Scholar 

  4. Magdziarz A, Wilk M. Thermal characteristics of the combustion process of biomass and sewage sludge. J Therm Anal Calorim. 2013;114:519–29.

    Article  CAS  Google Scholar 

  5. Raheem A, Sivasangar S, Azlina WAKGW, Yap YHT, Danquah MK, Harun R. Thermogravimetric study of Chlorella vulgaris for syngas production. Algal Res. 2015;12:52–9.

    Article  Google Scholar 

  6. Portofino S, Donatelli A, Iovanne P, Innella C, Civita R, Martino M, Matera DA, Russo A, Cornacchia G, Galvano S. Steam gasification of waste tyre: influence of process temperature on yield and product composition. Waste Manag. 2013;33:672–8.

    Article  CAS  Google Scholar 

  7. Pacioni TR, Soares D, Di Domenico M, Rosa MF, Moreira RF, José HJ. Bio-syngas production from agro-industrial biomass residues by steam gasification. Waste Manag. 2016;58:221–9.

    Article  CAS  Google Scholar 

  8. Lombardi L, Carnevale E, Corti A. Analysis of energy recovery potential using innovative technologies of waste gasification. Waste Manag. 2012;32:640–52.

    Article  CAS  Google Scholar 

  9. Hrabovsky M, Hlina M, Kavka T, Konrad M, Chumak O, Maslani A. Thermal plasma gasification of biomass for fuel gas production. High Temp Mater Process Int Q High Technol Plasma Process. 2009;13(3–4):299–313.

    Article  CAS  Google Scholar 

  10. Leal-Quir´os E. Plasma processing of municipal solid waste. Braz J Phys. 2004;34:4B.

    Article  Google Scholar 

  11. Glasser D, Hildebrandt D, Crowe CA. A geometric approach to steady flow reactors: the Attainable Region and optimization in concentration space. Ind Eng Chem Resour. 1987;26:1803–10.

    Article  CAS  Google Scholar 

  12. Sempuga BC, Hausberger B, Patel B, Hildebrandt D, Glasser D. Classification of chemical processes: a graphical approach to process synthesis to improve reactive process work efficiency. Ind Eng Chem Res. 2010;49(17):8227–37.

    Article  CAS  Google Scholar 

  13. Okonye LU, Hildebrandt D, Glasser D, Patel B. Attainable Regions for a reactor: application of G–H plot. Chem Eng Res Des. 2012;90:1590–609.

    Article  CAS  Google Scholar 

  14. Ming D, Glasser D, Hildebrandt D. Application of attainable region theory to batch reactors. Chem Eng Sci. 2013;99:203–14.

    Article  CAS  Google Scholar 

  15. Chimwani N, Mulenga F, Hildebrandt D, Glasser D, Bwalya M. Scale-up of batch grinding data for simulation of industrial milling of platinum group minerals ore. Miner Eng. 2014;63:100–9.

    Article  CAS  Google Scholar 

  16. Danha G, Hildebrandt D, Glasser D, Bhondayi C. A laboratory scale application of the attainable region technique on a platinum ore. Powder Technol. 2014;274:14–9.

    Article  Google Scholar 

  17. Nanda S, Dalai AK, Gökalp I, Kozinski JA. Valorization of horse manure through catalytic supercritical water gasification. Waste Manag. 2016;52:147–58.

    Article  CAS  Google Scholar 

  18. Vassilev SV, Baxter D, Andersen LK, Vassileva CG. An overview of the chemical composition of biomass. Fuels. 2010;89:913–33.

    Article  CAS  Google Scholar 

  19. Morrin S, Lettieri P, Chapman C, Taylor R. Fluid bed gasification—plasma converter process generating energy from solid waste: experimental assessment of sulphur species. Waste Manag. 2014;34:28–35.

    Article  CAS  Google Scholar 

  20. Šulc J, Štojdl J, Richter M, Popelka J, Svoboda K, Smetana J, Vacek J, Skoblja S, Buryan P. Biomass waste gasification—can be the two stage process suitable for tar reduction and power generation? Waste Manag. 2012;32:692–700.

    Article  Google Scholar 

  21. Smith JM, Abbott MM, Van Ness HC. Introduction to chemical engineering. Thermodynamics. 7th ed. 2001.

  22. Wang L-Q, Dun Y-H, Tang H, Wang T-Z. A biomass gasification system for synthesis gas from the new method. Nat Sci. 2009;1(3):195–203.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ralph Farai Muvhiiwa.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Muvhiiwa, R.F., Lu, X., Hildebrandt, D. et al. Applying thermodynamics to digestion/gasification processes: the Attainable Region approach. J Therm Anal Calorim 131, 25–36 (2018). https://doi.org/10.1007/s10973-016-6063-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-016-6063-9

Keywords

Navigation