Skip to main content
Log in

Effect of poly(vinylpyrrolidone) or sodium alginate on the stability of the amorphous form of nimesulide

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Nimesulide is a non-steroidal anti-inflammatory drug with a potent analgesic activity, but because it is practically insoluble in water, its bioavailability is significantly limited. One of the possible approaches for increasing the solubility and dissolution rate of a drug is to convert it from the crystalline to the amorphous form. Unfortunately, amorphous forms are generally unstable and do not guarantee an appropriate shelf life for the drug product. An interesting possibility for countering this difficulty is to use amorphous polymers to disperse the crystalline drug into the amorphous matrix, thus forming stable amorphous drug dispersions. In the present study, the thermal behavior of nimesulide and its physical stability in the amorphous state were fully characterized, and then, the possibility of prolonging its stability in the amorphous state was evaluated by dispersing the drug into two different amorphous polymers: poly(vinylpyrrolidone) or sodium alginate. The drug–polymer dispersion was obtained by co-heating the mix in a differential scanning calorimetry apparatus. The physicochemical stability of the pure nimesulide and the binary systems was evaluated by the Kolhaush–William–Watts equation. Aging experiments were carried out at different temperatures, and for each one the mean relaxation time constant was calculated to predict the physical stability of the amorphous system. The physical interaction between the drug and the polymer upon heating was determined according to the Gordon–Taylor equation. Our results showed that amorphous nimesulide is fragile, with limited stability, and thus inappropriate for industrial application. The observation that poly(vinylpyrrolidone) strongly increased the mean relaxation time constant of amorphous nimesulide was ascribed to the capacity of the binary system to form hydrogen bonds that stabilize the system. On the contrary, the sodium alginate was unable to increase the stability of the amorphous system and the mean relaxation time constant was even inferior to that of pure nimesulide. The failure of the two compounds to interact can be explained by the sterical hindrance of the sodium alginate chains.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Moore GGI, Harrington JK. US Patent 1974;3:840,597.

  2. Swingle KF, Moore GGI. Preclinical pharmacological studies with nimesulide. Drugs Exp Clin Res. 1984;10:587–97.

    CAS  Google Scholar 

  3. Babu GV, Kumar NR, Himasankar K, Seshasayana A, Murthy KV. Nimesulide modified gum karaya solid mixtures: preparation, characterization and formulation development. Drug Dev Ind Pharm. 2003;29:855–64.

    Article  Google Scholar 

  4. Meriani F, Coceani N, Sirotti C, Voinovich D, Grassi M. In vitro nimesulide absorption from different formulations. J Pharm Sci. 2004;93:540–52.

    Article  CAS  Google Scholar 

  5. Piel G, Pirotte B, Delneuville I, Neven B, Labres G, Delarge J, Delattre L. Study of the influence of both cyclodextrins and l-lysine on the aqueous solubility of nimesulide; isolation and characterization of nimesulide l-lysine–cyclodextrin complexes. J Pharm Sci. 1997;86:475–80.

    Article  CAS  Google Scholar 

  6. Buchi Nalluri N, Chowdary KPR, Murthy KVR, Becket G, Peter Crooks A. Tablet formulation studies on nimesulide and meloxicam—cyclodextrin binary systems. AAPS PharmSciTech. 2007;8:71–7.

    Article  Google Scholar 

  7. Shoukri RA, Ahmed IS, Shamma RN. In vitro and in vivo evaluation of nimesulide lyophilized orally disintegrating tablets. Eur J Pharm Biopharm. 2009;73:162–71.

    Article  CAS  Google Scholar 

  8. Gohel MC, Patel LD. Processing of Nimesulide-PEG 400-PG-PVP solid dispersions: preparation, characterization, and in vitro dissolution. Drug Dev Ind Pharm. 2003;29:299–310.

    Article  CAS  Google Scholar 

  9. Gohel MC, Patel LD. Improvement of nimesulide dissolution by a co-grinding method using surfactants. Pharm Pharmacol Commun. 2000;6:433–40.

    Article  CAS  Google Scholar 

  10. Buchi NN, Chowdar KPR, Murthy KVR, Hayman AR, Becket G. Physicochemical characterization and dissolution properties of nimesulide-cyclodextrin binary systems. AAPS PharmSciTech. 2003;4:6–17.

    Article  Google Scholar 

  11. Hancock BC, Parks M. What ist he true solubility advantage for amorphous pharmaceuticals? Pharm Res. 2000;17:397–404.

    Article  CAS  Google Scholar 

  12. Hancock BC, Zografi G. Characteristics and significance of the amorphous state in pharmaceutical systems. J Pharm Sci. 1997;86:1–12.

    Article  CAS  Google Scholar 

  13. Ford JL, Rubinstein MH. Ageing of indomethacin polyethylen glycol 6000 solid dispersion. Pharm Acta Helv. 1979;54:353–8.

    CAS  Google Scholar 

  14. Khougaz K, Clas SD. Cristallization inhibition in solid dispersions of MK-0591 and poly(vinylpyrrolidone) polymers. J Pharm Sci. 2000;89:1325–34.

    Article  CAS  Google Scholar 

  15. Matsumoto T, Zografi G. Physical properties of solid molecular dispersions of indomethacine with poly(vinylpyrrolidone) and poly(vinylpyrrolidone-co-vinyl-acetate) in relation to indomethacine crystyallization. Pharm Res. 1999;16:1722–8.

    Article  CAS  Google Scholar 

  16. Sekizaki H, Danjo K, Eguchi H, Yonezawa Y, Sunada H, Otsuka A. Solid-state interaction of ibuprofen with polyvinylpyrrolidone. Chem Pharm Bull. 1995;43:988–92.

    Article  Google Scholar 

  17. Gashi Z, Censi R, Malaj L, Gobetto R, Mozzicafreddo M, Angeletti M, Masic A, Di Martino P. Differences in the interactions between different aryl propionic acid derivatives and poly(vinylpyrrolidone) K90: a multi-methodological approach. J Pharm Sci. 2009;98:4216–28.

    Article  CAS  Google Scholar 

  18. Malaj L, Censi R, Mozzicafreddo M, Pellegrino L, Angeletti M, Gobetto R, Di Martino P. Influence of relative humidity on the interaction between different aryl proprionic acid derivatives and poly(vinylpyrrolidone) K90: evaluation of the effect on drug bioavailavbility. Int J Pharm. 2010;398:61–72.

    Article  CAS  Google Scholar 

  19. Censi R, Martena V, Hoti E, Malaj L, Di Martino P. Preformulation study of nicergoline solid dispersions. J Therm Anal Calorim. 2014;115:2439–46.

    Article  CAS  Google Scholar 

  20. Sharma A, Jain CP. Preparation and characterization of solid dispersions of carvedilol with PVP K90. Res Pharm Sci. 2010;5:49–56.

    CAS  Google Scholar 

  21. Sethia S, Squillante E. Solid dispersion of carbamazepine in PVP K90 by conventional solvent evaporation and supercritical methods. Int J Pharm. 2004;272:1–10.

    Article  CAS  Google Scholar 

  22. Poovi G, Umamaheswari M, Sharmila S, Kumar S, Rajalakshmi AN. Development of domperidone solid dispersion powders using sodium alginate as carrier. Eur J Appl Sci. 2013;5:36–42.

    CAS  Google Scholar 

  23. Pradhan R, Tran TH, Choi JY, Choi IS, Choi HG, Yong CS, Kim JO. Development of a rebamipide solid dispersion system with improved dissolution and oral bioavailability. Arch Pharm Res. 2015;38:522–33.

    Article  CAS  Google Scholar 

  24. Chiou WL, Riegelman SJ. Increased dissolution rates of water-insoluble cardiac glycosides and steroids via solid dispersions in polyethylene glycol 6000. J Pharm Sci. 1971;60:1569–71.

    Article  CAS  Google Scholar 

  25. Cao J, Long Y, Shanks RA. Experimental investigation into the heat capacity measurement using an modulated DSC. J Therm Anal Calorim. 1997;50:365–73.

    Article  CAS  Google Scholar 

  26. Venkata Krishnan R, Nagarajan K. Evaluation of heat capacity measurements by temperature-modulated differential scanning calorimetry. J Therm Anal Calorim. 2010;102:1135–40.

    Article  CAS  Google Scholar 

  27. Hancock BC, Christensen K, Shamblin SL. Estimating the critical molecular mobility temperature (TK) of amorphous pharmaceuticals. Pharm Res. 1998;15:1649–50.

    Article  CAS  Google Scholar 

  28. Hancock BC, Shamblin SL, Zografi G. Molecular mobility of amorphous pharmaceutical solids below their glass transition temperatures. Pharm Res. 1995;12:799–806.

    Article  CAS  Google Scholar 

  29. Di Martino P, Palmieri GF, Martelli S. Molecular mobility of the paracetamol amorphous form. Chem Pharm Bull. 2000;48:1105–8.

    Article  Google Scholar 

  30. Six K, Verreck G, Peeters J, Augustijns P, Kinget R, Van den Mooter G. Characterization of glassy itraconazole: a comparative study of its molecular mobility below T g with that of structural analogues using MTDSC. Int J Pharm. 2001;213:163–73.

    Article  CAS  Google Scholar 

  31. Bawens-Crowet C, Bawens JC. Annealing of polycarbonate below the glass transition temperature up to equilibrium: a quantitative interpretation of enthalpy relaxation. Polymer. 1986;27:709–13.

    Article  Google Scholar 

  32. Kemmish DJ, Hay JN. The effect of physical ageing on the properties of amorphous PEEK. Polymer. 1985;26:905–12.

    Article  CAS  Google Scholar 

  33. Fukuoka E, Makita M, Yamamura S. Some physicochemical properties of glassy indomethacine. Chem Pharm Bull. 1986;34:4314–21.

    Article  CAS  Google Scholar 

  34. Kerč J, Srčič S, Mohar M, Šmid-Korbar J. Some physicochemical properties of glassy felodipine. Int J Pharm. 1991;68:25–33.

    Article  Google Scholar 

  35. Van den Mooter G, Augustijns P, Kinget R. Stability prediction of amorphous benzodiazepines by calculation of the mean relaxation time constant using Williams–Watts decay function. Eur J Pharm Biopharm. 1999;48:43–8.

    Article  Google Scholar 

  36. Gordon M, Taylor JS. Ideal copolymers and the second- order transitions of synthetic rubbers—I: noncrystalline copolymers. J Appl Chem. 1952;2:493–500.

    Article  CAS  Google Scholar 

  37. Simha R, Bayer RF. General relation involving the glass temperature and coefficient of expansion of polymers. J Chem Phys. 1962;37:1003–7.

    Article  CAS  Google Scholar 

  38. Nair R, Nyamweya N, Gönen S, Martínez-Miranda LG, Hoag SW. Influence of various drugs on the glass transition temperature of poly(vinylpyrrolidone): a thermodynamic and spectroscopic investigation. Int J Pharm. 2001;225:83–96.

    Article  CAS  Google Scholar 

  39. Schneider HA. Glass transition behaviour of compatible polymer blends. Polymer. 1989;30:771–9.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Ms. Sheila Beatty for editing the English usage of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Piera Di Martino.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Censi, R., Gigliobianco, M.R., Malaj, L. et al. Effect of poly(vinylpyrrolidone) or sodium alginate on the stability of the amorphous form of nimesulide. J Therm Anal Calorim 123, 2415–2425 (2016). https://doi.org/10.1007/s10973-015-5175-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-015-5175-y

Keywords

Navigation