Skip to main content
Log in

Effect of composition on the thermal behavior of NiMnGa alloys

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

The methods to determine martensitic transformation temperature, enthalpy and entropy change, specific heat capacity change with temperature, and transformation activation energies of Ni–%29.5Mn–%21Ga, Ni–%29Mn–%21Ga, Ni–%29.5Mn–%20Ga, and Ni–%28.5Mn–%20.5Ga (atomic percentage) alloys were investigated by differential scanning calorimetry. It was observed that the transformation temperature increased with an increase in atomic nickel ratio. Meanwhile, it was detected that the change in enthalpy increases with the amount of nickel. The highest values of entropy change and the heat capacity at room temperature were observed in the alloy having the least amount of nickel in it.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Degeratu S, Rotaru P, Rizescu S, Bizdoaca NG. Thermal study of shape memory alloy (SMA) spring actuator designed insure the motion of barrier structure. J Therm Anal Calorim. 2012. doi:10.1007/s10973-012-2369-4.

    Google Scholar 

  2. Zanotti C, Giuliani P, Bassani P, Zhang Z, Chrysanthou A. Comparison between the thermal properties of fully dense and porous NiTi SMAs. Intermetallic. 2010;18:14–21.

    Article  CAS  Google Scholar 

  3. Xuan HC, Wang DH, Zhang CL, Han ZD, Gu XB, Du YW. Boron’s effect on martensitic transformation and magnetocaloric effect in Ni43Mn46Sn11B x alloys. Appl Phys Lett. 2008;92:102503–5.

    Article  Google Scholar 

  4. Khovailo VV, Chernenko VA, Cherechukin AA, Takagi T, Abe T. An efficient control of Curie temperature T c in NiMnGa alloys. J Magn Magn Mater. 2004;272–276:2067–8.

    Article  Google Scholar 

  5. Jesintha Rani R, Senthur Pandi R, Seenithurai S, Vinodh Kumar S, Muthuraman M, Mahedran M. Structural thermal and magnetic characterization of Ni–Mn–Ga ferromagnetic shape memory alloys. Am J Condens Matter Phys. 2011;1–1:1–7.

    Google Scholar 

  6. Ma Y, Jiang C, Li Y, Xu H, Wang C, Liu X. Study of Ni50+x Mn25Ga25−x (x = 2–11) as high-temperature shape memory alloys. Acta Mater. 2007;55:1533–41.

    Article  CAS  Google Scholar 

  7. Ingale B, Golapan R, Rajasekhar M, Ram S. Studies on ordering temperature and martensite stabilization in Ni55Mn20−x Ga25+x . J Alloy Compd. 2009;475:276–80.

    Article  CAS  Google Scholar 

  8. Cong DY, Wang S, Wang YD, Ren Y, Zuo L, Esling C. Martensitic and magnetic transformation in Ni–Mn–Ga–Co ferromagnetic shape memory alloys. Mater Sci Eng. 2008;473:213–8.

    Article  Google Scholar 

  9. Gaitzsch U, Roth S, Rellinghaus B, Schultz L. Adjusting the crystal structure of NiMnGa shape memory ferromagnets. J Magn Magn Mater. 2006;305:275–7.

    Article  CAS  Google Scholar 

  10. Singh RK, Shamsuddin M, Gopalan R, Mathur RP, Chandrasekaran V. Magnetic and structural transformation in off-stoichiometric NiMnGa alloys. Mater Sci Eng. 2008;476:195–200.

    Article  Google Scholar 

  11. Borisenko ID, Koledov VV, Khalovailo VV, Shavrov VG. Martensitic and magnetic phase transition in ternary ferromagnetic alloys Ni–Mn–Ga. J Magn Magn Mater. 2006;300:486–8.

    Article  Google Scholar 

  12. Wedel C, Itagaki K. High temperature phase relations in the ternary Ga–Mn–Ni system. J Phase Equilib. 2001;22(3):324.

    Article  CAS  Google Scholar 

  13. Feng G, Jiang C, Liang T, Xu H. Magnetic and structral transition of Ni50+x Mn25−x/2Ga25−x/2 (x = 2–5) alloys. J Magn Magn Mater. 2002;248:312–7.

    Article  CAS  Google Scholar 

  14. Khalil-Allafi J, Amin-Ahmadi B. The effect of chemical composition on enthalpy and entropy change of martensitic transformations in binary NiTi shape memory alloys. J Alloy Compd. 2009;487:363–6.

    Article  CAS  Google Scholar 

  15. Sofronie M, Tolea F, Kuncser V, Valeanu M. Martensitic transformation and accompanying magnetic changes in Ni–Fe–Ga–Co alloys. J Appl Phys. 2010;107:113905–8.

    Article  Google Scholar 

  16. Jiang C, Muhammad Y, Deng L, Wu W, Xu H. Composition dependence on the martensitic structures of the Mn-rich NiMnGa alloys. Acta Mater. 2004;52:2779–85.

    Article  CAS  Google Scholar 

  17. Khovaillo VV, Oikawa K, Abe T, Takagi T. Entropy change at the martensitic transformation in ferromagnetic shape memory alloys Ni2+x Mn1−x Ga. J Appl Phys. 2003;93(10):8483–5.

    Article  Google Scholar 

  18. Kumar R, Sharma P, Barman PB, Sharma V, Katyal SC, Ragra VS. Thermal stability and crystalization kinetics of Se–Te–Sn alloys using differential scanning caloritmetry. J Therm Anal Calorim. 2011. doi:10.1007/s10973-011-2062-z.

    Google Scholar 

  19. Guili G, Yujun B, Qifeng P. DSC study of martensitic transformation kinetics in Cu–Zn–Al–Mn–Ni shape memory alloy. Acta Metall Sin. 1996;9(1):56–8.

    Google Scholar 

  20. Cesari E, Chernenko VA, Font J, Muntasell J. AC technique apllied to C p measurements in NiMnGa alloys. Thermochim Acta. 2005;433:153–6.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was supported by Firat University Research-Project unit under Project No. 1866 and TUBITAK 106T583.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mediha Kök.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kök, M., Aydoğdu, Y. Effect of composition on the thermal behavior of NiMnGa alloys. J Therm Anal Calorim 113, 859–863 (2013). https://doi.org/10.1007/s10973-012-2817-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-012-2817-1

Keywords

Navigation