Skip to main content
Log in

Adsorption behavior of bovine serum albumin on Zn–Al and Mg–Al layered double hydroxides

  • Original Paper: Sol-gel and hybrid materials for biological and health (medical) applications
  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

In this work, non-calcined Mg–Al and Zn–Al layered double hydroxides (LDHs) with molar ratio of 3:1 were investigated for the adsorption of bovine serum albumin (BSA). Both LDHs were synthesized using the co-precipitation method and were characterized by X-ray diffraction, N2 adsorption–desorption isotherm at −196 °C, elemental analysis and X-ray photoelectron spectroscopy. The adsorption of BSA was evaluated in a batch adsorption system to assess the influence of buffer solution and buffer pH, contact time and initial concentration. Fixed-bed adsorption experiments were also performed in order to evaluate the dynamic adsorption behavior of BSA on the LDH as well as the regenerability of this material. In the batch adsorption experiments, the maximum amount of BSA adsorbed was reached at its isoelectric point (pI = 4.8) with 50 mM acetate buffer for Mg–Al LDH and pH 6.7 with 50 mM 2-(N-morpholino)ethanesulfonic acid (MES) buffer for Zn–Al LDH. The Langmuir and Langmuir–Freundlich models provided maximum equilibrium adsorption capacity of 338.74 and 346.54 mg g−1for Zn-Al LDH, respectively, and 196.12 and 197.80, respectively, for Mg-Al LDH. Column experiments were carried out with a constant flow of 1 mL min−1, varying the feed concentration of BSA solutions from 1.0 to 2.0 mg mL−1. An average of 98 % of BSA injected into the column was retained, and a completely elution was reached using 50 mM sodium phosphate with pH 12.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Leroux F, Taviot-Gueho C (2005) Fine tuning between organic and inorganic host structure: new trends in layered double hydroxide hybrid assemblies. J Mater Chem 15:3628–3642

    Article  Google Scholar 

  2. Tamura H, Chiba J, Ito M, Takeda T, Kikkawa S, Mawatari Y, Tabata M (2006) Formation of hydrotalcite in aqueous solutions and intercalation of ATP by anion exchange. J Colloid Interface Sci 300:648–654

    Article  Google Scholar 

  3. Costa DG, Rocha AB, Souza WF, Chiaro SSX, Leitão AA (2012) Comparative Structural, thermodynamic and electronic analyses of Zn_Al_An− hydrotalcite-like compounds (An− = Cl, F, Br, OH, CO3 2− or NO3 ): an ab initio study. Appl Clay Sci 56:16–22

    Article  Google Scholar 

  4. Costa DG, Rocha AB, Souza WF, Chiaro SSX, Leitão AA (2011) An initio simulation of changes in geometry, electronic structure, and gibbs free energy caused by dehydration of hydrotalcites containing Cl and CO3 2− counteranions. J Phys Chem B 115:3531–3537

    Article  Google Scholar 

  5. Yan H, Wei M, Ma J, Li F, Evans DG, Duan X (2009) Theoretical study on the structural properties and relative stability of M(II)Al layered double hydroxides based on a cluster model. J Phys Chem A 113:6133–6141

    Article  Google Scholar 

  6. Iyi N, Sasaki T (2008) Decarbonation of MgAl-LDHs (layered double hydroxides) using acetate-buffer/NaCl mixed solution. J Colloid Interface Sci 322:237–245

    Article  Google Scholar 

  7. Aguiar JE, Bezerra BTC, Braga BM, Lima PDS, Nogueira REFQ, de Lucena SMP, da Silva IJ (2013) Adsorption of anionic and cationic dyes from aqueous solution on non-calcined Mg–Al layered double hydroxide: experimental and theoretical study. Sep Sci Technol 48:2307–2316

    Article  Google Scholar 

  8. Wang Y, Gao H (2006) Compositional and structural control on anion sorption capability of layered double hydroxides (LDHs). J Colloid Interface Sci 301:19–26

    Article  Google Scholar 

  9. Zhang T, Zhou Y, He M, Zhu Y, Bu X, Wang Y (2013) Biomimetic fabrication of hierarchically structured LDHs/ZnO composites for the separation of bovine serum albumin. Chem Eng J 219:278–285

    Article  Google Scholar 

  10. Albertazzi S, Basile F, Vaccari A (2004) Catalytic properties of hydrotalcite-type anionic clays. Interface Sci Technol 1:496–546

    Article  Google Scholar 

  11. García-Sancho C, Moreno-Tost R, Mérida-Robles JM, Santamaría-González J, Jiménez-López A, Maireles-Torres P (2011) Etherification of glycerol to polyglycerols over MgAl mixed oxides. Catal Today 167:84–90

    Article  Google Scholar 

  12. Mascolo G, Mascolo MC (2015) On the synthesis of layered double hydroxides (LDHs) by reconstruction method based on the “memory effect”. Micropor Mesopor Mater 214:246–248

    Article  Google Scholar 

  13. Bhakta SA, Evans E, Benavidez TE, García CD (2015) Protein adsorption onto nanomaterials for the development of biosensors and analytical devices: a review. Anal Chim Acta 872:7–25

    Article  Google Scholar 

  14. Patterson K, Lisal M, Colina CM (2011) Adsorption behavior of model proteins on surfaces. Fluid Phase Equilib 302:48–54

    Article  Google Scholar 

  15. Vinu A, Miyahara M, Hossain KZ, Nakanishi T, Ariga K (2005) Adsorption of lysozyme over mesoporous carbons with various pore diameters. Stud Surf Sci Catal 156:637–642

    Article  Google Scholar 

  16. Kim J, Somorjai GA (2003) Molecular packing of lysozyme, fibrinogen, and bovine serum albumin on hydrophilic and hydrophobic surfaces studied by infrared–visible sum frequency generation and fluorescence microscopy. J Am Chem Soc 125:3150–3158

    Article  Google Scholar 

  17. Zoungrana T, Findenegg GH, Norde W (1997) Structure, stability, and activity of adsorbed enzymes. J Colloid Interface Sci 190:437–448

    Article  Google Scholar 

  18. Brandes N, Welzel PB, Werner C, Kroh LW (2006) Adsorption-induced conformational changes of proteins onto ceramic particles: differential scanning calorimetry and FTIR analysis. J Colloid Interface Sci 299:56–69

    Article  Google Scholar 

  19. Vermonden T, Giacomelli CE, Norde W (2001) Reversibility of structural rearrangements in bovine serum albumin during homomolecular exchange from AgI particles. Langmuir 17:3734–3740

    Article  Google Scholar 

  20. Kondo A, Oku S, Higashitani K (1991) Structural changes in protein molecules adsorbed on ultrafine silica particles. J Colloid Interface Sci 143:214–221

    Article  Google Scholar 

  21. Luensmann D, Jones L (2008) Albumin adsorption to contact lens materials: a review. Cont Lens Anterior Eye 31:179–181

    Article  Google Scholar 

  22. Vorobyov I, Allen TW (2011) On the role of anionic lipids in charged protein interactions with membranes. Biochim Biophys Acta 1808:1673–1683

    Article  Google Scholar 

  23. Parés D, Saguer E, Carretero C (2011) Blood by-products as ingredients in processed meat. In: Kerry JP, Kerry JF (eds) Processed meats. Woodhead Publishing, Cambridge, pp 218–242

    Chapter  Google Scholar 

  24. Santos SML, Cecilia JA, Vilarrasa-García E, Silva IJ Jr, Rodríguez-Castellón E, Azevedo DCS (2016) The effect of structure modifying agents in the SBA-15 for its application in the biomolecules adsorption. Microporous Mesoporous Mater 232:53–64

    Article  Google Scholar 

  25. Duarte-Silva R, Villa-García MA, Rendueles M, Díaz M (2014) Structural, textural and protein adsorption properties of kaolinite and surface modified kaolinite adsorbents. Appl Clay Sci 90:73–80

    Article  Google Scholar 

  26. Lepoitevin M, Jaber M, Guégan R, Janot JM, Dejardin P, Henn F, Balme S (2014) BSA and lysozyme adsorption on homoionic montmorillonite: influence of the interlayer cation. Appl Clay Sci 95:396–402

    Article  Google Scholar 

  27. Cengiz S, Çavaş L, Yurdakoç K (2012) Bentonite and sepiolite as supporting media: immobilization of catalase. Appl Clay Sci 65:114–120

    Article  Google Scholar 

  28. Ellingsen JE (1991) A study on the mechanism of protein adsorption to TiO2. Biomaterials 12:593–596

    Article  Google Scholar 

  29. Akasaka H, Konishi M, Gawazawa N, Ohshio S, Toda I, Saitoh H (2012) Detailed evaluation of protein adsorption on alumina surface through surface plasmon resonance phenomenon. Appl Surf Sci 258:9526–9530

    Article  Google Scholar 

  30. Szewczuk-Karpisz K, Wiśniewska M, Myśliwiec D (2015) Albumin adsorption influence on the stability of the mesoporous zirconia suspension. J Ind Eng Chem 32:113–119

    Article  Google Scholar 

  31. Kandori K, Hamazaki H, Matsuzawa M, Togashi S (2014) Selective adsorption of acidic protein of bovine serum albumin onto sheet-like calcium hydroxyapatite particles produced by microreactor. Adv Powder Technol 25:354–359

    Article  Google Scholar 

  32. Swain SK, Sarkar D (2013) Study of BSA protein adsorption/release on hydroxyapatite nanoparticles. Appl Surf Sci 286:99–103

    Article  Google Scholar 

  33. Bellezza F, Alberani A, Posati T, Tarpani L, Latterini L, Cipiciani A (2012) Protein interactions with nanosized hydrotalcites of different composition. J Inorg Biochem 106:134–142

    Article  Google Scholar 

  34. Ralla K, Sohling U, Suck K, Sander F, Kasper C, Ruf F, Scheper T (2011) Adsorption and separation of proteins by a synthetic hydrotalcite. Colloid Surface B 87:217–225

    Article  Google Scholar 

  35. Jin L, He D, Li Z, Wei M (2012) Protein adsorption on gold nanoparticles supported by a layered double hydroxide. Mater Lett 77:67–70

    Article  Google Scholar 

  36. Iafisco M, Palazzo B, Falini G, Di Foggia M, Bonora S, Nicolis S, Casella L, Roveri N (2008) Adsorption and conformational change of myoglobin on biomimetic hydroxyapatite nanocrystals functionalized with alendronate. Langmuir 24:4924–4930

    Article  Google Scholar 

  37. di Risio S, Yan N (2009) Adsorption and inactivation behavior of horseradish peroxidase on cellulosic fiber surfaces. J Colloid Interface Sci 338:410–419

    Article  Google Scholar 

  38. Bellezza F, Cipiciani A, Quotadamo MA, Cinelli S, Onori G, Tacchi S (2007) Structure, stability, and activity of myoglobin adsorbed onto phosphate-grafted zirconia nanoparticles. Langmuir 23:13007–13012

    Article  Google Scholar 

  39. Fanali G, di Masi A, Trezza V, Marino M, Fasano M, Ascenzi P (2012) Human serum albumin: from bench to bedside. Mol Aspects Med 33:209–290

    Article  Google Scholar 

  40. Carter DC, Ho JX (1994) Structure of serum albumin. Adv Protein Chem 45:153–203

    Article  Google Scholar 

  41. Hirayama K, Akashi S, Furuya M, Fukuhara KI (1990) Rapid confirmation and revision of the primary structure of bovine serum albumin by ESIMS and frit-FAB LC/MS. Biochem Biophys Res Commun 173:639–646

    Article  Google Scholar 

  42. Seftel EM, Popovici E, Mertens M, Witte KD, Tendeloo GV, Cool P, Vansant EF (2008) Zn–Al layered double hydroxides: synthesis, characterization and photocatalytic application. Microporous Mesoporous Mater 113:296–304

    Article  Google Scholar 

  43. Rouquerol F, Rouquerol J, Sing KSW, Llewellyn P, Maurin G (2014) Adsorption by powders and porous solids—principles, methodology and applications. Academic Press, Oxford

    Google Scholar 

  44. Gondim D, Lima L, de Souza M, Bresolin I, Adriano W, Azevedo DCS, Silva IJ Jr (2012) Dye ligand epoxide chitosan/alginate: a potential new stationary phase for human IgG purification. Adsorpt Sci Technol 30:701–711

    Article  Google Scholar 

  45. Cavani F, Trifirò F, Vaccari A (1991) Hydrotalcite-type anionic clays: preparation, properties and applications. Catal Today 11:173–301

    Article  Google Scholar 

  46. Mills SJ, Christy AG, Génin JMR, Kameda T, Colombo F (2012) Nomenclature of the hydrotalcite supergroup: natural layered double hydroxides. Mineral Mag 76:1289–1336

    Article  Google Scholar 

  47. Allmann R, Jepsen HP (1969) Die Struktur des Hydrotalkits. Neues Jahrb Mineral Monatsh 12:544–551

    Google Scholar 

  48. Mousty C, Kaftan O, Prevot V, Forano C (2008) Alkaline phosphatase biosensors based on layered double hydroxides matrices: role of LDH composition. Sens Actuators B Chem 133:442–448

    Article  Google Scholar 

  49. Lv T, Ma W, Xin G, Wang R, Xu J, Liu D, Liu F, Pan D (2012) Physicochemical characterization and sorption behavior of Mg–Ca–Al (NO3) hydrotalcite-like compounds toward removal of fluoride from protein solutions. J Hazard Mater 237:121–132

    Article  Google Scholar 

  50. Gregg SJ, Sing KSW (1982) Adsorption, surface area and porosity, 2nd edn. Academic Press, New York

    Google Scholar 

  51. Angelescu E, Pavel OD, Bîrjega R, Florea M, Zăvoianu R (2008) The impact of the “memory effect” on the catalytic activity of Mg/Al; Mg, Zn/Al; Mg/Al, Ga hydrotalcite-like compounds used as catalysts for cycloxene epoxidation. Appl Catal A Gen 341:50–57

    Article  Google Scholar 

  52. Auxilio AR, Andrews PC, Junk PC, Spiccia L (2009) The adsorption behavior of C.I. Acid Blue 9 onto calcined Mg–Al layered double hydroxides. Dyes Pigments 81:103–112

    Article  Google Scholar 

  53. Lazaridis NK, Karapantsios TD, Georgantas D (2003) Kinetic analysis for the removal of a reactive dye from aqueous solution onto hydrotalcite by adsorption. Water Res 37:3023–3033

    Article  Google Scholar 

  54. Benito P, Labajos FM, Rocha J, Rives V (2006) Influence of microwave radiation on the textural properties of layered double hydroxides. Microporous Mesoporous Mater 94:148–158

    Article  Google Scholar 

  55. Guerrero-Urbaneja P, García-Sancho C, Moreno-Tost R, Mérida-Robles J, Santamaría-González J, Jiménez-López A, Maireles-Torres P (2014) Glycerol valorization by etherification to polyglycerols by using metal oxides derived from MgFe hydrotalcites. Appl Catal A Gen 470:199–207

    Article  Google Scholar 

  56. Moulder JF, Stickle WF, Sobol PE, Bomben KD (1992) Handbook of X-ray photoelectron spectroscopy. Perkin-Elmer Corp, Eden Prairie, MN

    Google Scholar 

  57. Brindley GW, Kikkawa S (1979) A crystal-chemical study of Mg, Al and Ni, Al hydroxyl-perchlorates and hydroxyl-carbonates. Am Mineral 64:836–843

    Google Scholar 

  58. Bellezza F, Cipiciani A, Latterini L, Posati T, Sassi P (2009) Structure and catalytic behavior of myoglobin adsorbed onto nanosized hydrotalcites. Langmuir 25:10918–10924

    Article  Google Scholar 

  59. Moerz ST, Huber P (2015) pH-dependent selective protein adsorption into mesoporous silica. J Phys Chem C 119:27072–27079

    Article  Google Scholar 

  60. You Y, Vance GF, Zhao H (2001) Selenium adsorption on Mg–Al and Zn–Al layered double hydroxides. Appl Clay Sci 20:13–25

    Article  Google Scholar 

  61. Violante A, Pucci M, Cozzolino V, Zhu J, Pigna M (2009) Sorption/desorption of arsenate on/from Mg–Al layered double hydroxides: influence of phosphate. J Colloid Interface Sci 333:63–70

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to thank CAPES and CNPq (Universal 2010 Process No. 474436-2010-1) for financial support and Project P12-RNM 1565 (Excelencia, Junta de Andalucía) and Project CTQ2015-68951-C3-3-R of MINECO and FEDER funds.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Juan A. Cecilia or Ivanildo J. Silva Jr..

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nogueira, K.A.B., Cecilia, J.A., Santos, S.O. et al. Adsorption behavior of bovine serum albumin on Zn–Al and Mg–Al layered double hydroxides. J Sol-Gel Sci Technol 80, 748–758 (2016). https://doi.org/10.1007/s10971-016-4166-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-016-4166-1

Keywords

Navigation