Skip to main content
Log in

Synthesis of mesoporous Stöber silica nanoparticles: the effect of secondary and tertiary alkanolamines

  • Original Paper
  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

The effect of secondary (diethanolamine) and tertiary (triethanolamine) alkanolamines as catalysts on the formation of mesoporous Stöber silica nanoparticles by sol–gel method was studied. The particles were characterized by thermogravimetry and differential thermal analysis, Fourier transform infrared spectroscopy, N2 physisorption measurements, and field emission scanning electron microscopy. By using ammonia and different alkanolamines as catalysts, the Brunauer–Emmet–Teller (BET) surface area and pore volume increased in the order of ammonia < diethanolamine < triethanolamine. A maximum BET surface area of 140.1 m2 g−1 and pore volume of 0.66 cm3 g−1 were obtained from triethanolamine catalyzed silica particles. The average particle size of silica prepared by ammonia and different alkanolamines as catalysts decreased in the order of ammonia > diethanolamine > triethanolamine. The role of different alkanolamines on the textural properties and particle size of silica is explained in terms of their relative steric hindrance and basicity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Iler RK (1978) The chemistry of silica: solubility, polymerization, colloid and surface properties and biochemistry of silica. Wiley, New York

    Google Scholar 

  2. Brinker CJ, Scherer GW (eds) (1990) Sol–gel science: the physics and chemistry of sol–gel processing. Academic Press, Amsterdam

    Google Scholar 

  3. Yokoi T, Wakabayashi J, Otsuka Y, Fan W, Iwama M, Wantabe R, Aramaki K, Shimojima A, Tatsumi T, Okubo T (2009) Chem Mater 21(15):3719–3729

    Article  Google Scholar 

  4. Burns A, Ow H, Wiesner U (2006) Chem Soc Rev 35(11):1028–1042

    Article  Google Scholar 

  5. Stöber W, Fink A (1968) J Colloid Interface Sci 26(1):62–69

    Article  Google Scholar 

  6. Nozawa K, Gailhanou H, Raison L, Panizza P, Ushiki H, Sellier E, Delville JP, Delville MH (2005) Langmuir 21(4):1516–1523

    Article  Google Scholar 

  7. Wantabe R, Yokoi T, Kobayashi E, Otsuka Y, Shimojima A, Okubo T, Tatsumi T (2011) J Colloid Interface Sci 360(1):1–7

    Article  Google Scholar 

  8. Yokoi T, Karouji T, Ohta S, Kondo JN, Tatsumi T (2010) Chem Mater 22(13):3900–3908

    Article  Google Scholar 

  9. Adam F, Chew T-S, Andas J (2011) J Sol–Gel Sci Technol 59(3):580–583

    Article  Google Scholar 

  10. Jones SM (2011) J Non-Cryst Solids 291(3):206–210

    Article  Google Scholar 

  11. Venkatathri N, Yun DS, Yoo JW (2009) Mater Res Bull 44(6):1317–1322

    Article  Google Scholar 

  12. Nikolić M, Giannakopoulos KP, Srdić VV (2010) Process Appl Ceram 4(2):81–85

    Article  Google Scholar 

  13. Ghosh S, Naskar MK (2014) J Am Ceram Soc 97(1):100–106

    Article  Google Scholar 

  14. Naskar MK (2005) J Mater Sci 40(5):1309–1311

    Article  Google Scholar 

  15. Pohl ER, Osterholtz FD (1985) In: Ishida H, Kumar G (eds) Molecular characterization of composite interfaces. Plenum, New York

    Google Scholar 

  16. Bogush GH, Zukoski CF (1991) J Colloid Interface Sci 142(1):19–34

    Article  Google Scholar 

  17. Chen SL, Dong P, Yang GH, Yang JJ (1996) Ind Eng Chem Res 35(12):4487–4493

    Article  Google Scholar 

  18. Green DL, Jayasundra S, Lam YF, Harris MT (2003) J Non Cryst Solids 315(1–2):166–179

    Article  Google Scholar 

  19. Rahman IA, Vejayakumaran P, Sipaut CS, Ismail J, Abu Makar M, Adnan R, Chee CK (2007) Colloids Surface A Physicochem Eng Asp 294(1–3):102–110

    Article  Google Scholar 

  20. Chou K-S, Chen CC (2003) Adv Technol Mater Mater Proc J 5(1):31–35

    Google Scholar 

  21. Ibrahim IAM, Zikry AAF, Sharaf MA (2010) J Am Sci 6(11):985–989

    Google Scholar 

  22. Khimich NN, Zvyagil’skaya YV, Zhukov AN, Us’yarov OG (2003) Russ J Appl Chem 76(6):875–878

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to thank the Director of this Institute for his kind permission to publish this paper. One of the authors (S. Nandy) is thankful to UGC for her fellowship. The financial support from CSIR, New Delhi in the Project No. CERMESA-ESC-0104 is also thankfully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Milan Kanti Naskar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nandy, S., Kundu, D. & Naskar, M.K. Synthesis of mesoporous Stöber silica nanoparticles: the effect of secondary and tertiary alkanolamines. J Sol-Gel Sci Technol 72, 49–55 (2014). https://doi.org/10.1007/s10971-014-3420-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-014-3420-7

Keywords

Navigation