Skip to main content

Advertisement

Log in

Bandgap modification of TiO2 sol–gel films by Fe and Ni doping

  • Original Paper
  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

Nickle and iron doped TiO2 thin films were prepared on glass substrates by sol–gel dip coating process. Indirect and direct optical energy gaps were calculated with the incorporation of different concentrations of both the ions. Indirect bandgap was found to be a strong function of the dopant concentration, whereas direct energy gap has negligible dependence on the nature of dopant and its concentration. Direct energy gap has always been found to retain a value higher than the indirect energy gap. Variation of observed energy gap properties shows a trend similar to that reported on the basis of numerical calculations or the samples obtained by other techniques. Increase in refractive index and corresponding density of the film sample does not support the change in turn over frequency. The influence of crystalline phase change is also ruled out by XRD investigations. It is concluded that red shift of band edge absorption takes place by incorporation of dopant and sol–gel dip coating technique offers an effective low cost route to the production of these coatings.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Linsebigler AL, Lu G, Yates JT Jr (1995) Chem Rev 95:735

    Article  CAS  Google Scholar 

  2. Chen Y, Dionysiou DD (2006) Appl Catal B Environ 69:24

    Article  CAS  Google Scholar 

  3. Wingkei Ho, Yu JC, Lee S (2007) Appl Catal B Environ 73:135

    Article  Google Scholar 

  4. Zhang W, Zhu S, Li Y, Wang F (2008) Vacuum 82:328

    Article  Google Scholar 

  5. Sun L, Huo L, Zhao H, Gao S, Zhao J (2006) Sens Actuators B114:387

    CAS  Google Scholar 

  6. Mohammadi MR, Fray DJ (2007) Acta Mater 55:4455

    Article  CAS  Google Scholar 

  7. Madou MJ, Morrision SR (1989) Chemical sensing with solid state devices. Academic, San Diego

    Google Scholar 

  8. Goren L, Willner I, Frank AJ (1990) Phys. Chem 94:3784

    Article  CAS  Google Scholar 

  9. Sheng Y, Xu Y, Jiang D, Liang L, Wu D, Sun Y (2008) Int J Photoenergy 2008(563949):7

    Google Scholar 

  10. Bahneman DW (1994) Phys Chem 98:1025

    Google Scholar 

  11. Lin H, Kumon S, Kozuka H, Yoko T (1998) Thin Solid Films 315:266

    Article  CAS  Google Scholar 

  12. Lin J, Yu JC, Lo D, Lam SK (1999) J Catal 183:68

    Article  Google Scholar 

  13. Dang TMD, Le DD, Chau VT, Dang MC (2010) Adv Nat Sci Nanosci Nanotechnol 1:015004

    Article  Google Scholar 

  14. Sharma SD, Singh D, Saini KK, Kant C, Sharma V, Jain SC, Sharma CP (2006) Appl Catal A 314:40

    Article  Google Scholar 

  15. Kim KJ, Park YR (2005) Thin Solid Films 484:34

    Article  Google Scholar 

  16. Abazovic ND, Comor MI, Dramicanin MD, Jovanovic DJ, Ahrenkiel SP, Nedeljkovic JM (2006) J Phys Chem B 110:25366

    Article  CAS  Google Scholar 

  17. Abazovic ND, Ruvarac-Bugarcic IA, Comor MI, Bibic N, Ahrenkiel SP, Nedeljkovic JM (2008) Opt Mater 30:1139

    Article  CAS  Google Scholar 

  18. Lucy IB, Beynon J, Waters DN (1995) J Mater Sci Lett 14:515

    Google Scholar 

  19. Mardare D, Tasca M, Delibas M, Rusu GI (2000) Appl Surf Sci 156:200

    Article  CAS  Google Scholar 

  20. Ottermann CR, Bange K (1996) Thin Solid Films 286:32

    Article  CAS  Google Scholar 

  21. Umebayash T, Yamaki T, Itoch H, Asori K (2002) J Phys Chem Solids 63:1909–1920

    Article  Google Scholar 

  22. Li W, Wang Y, Lin H, Ismat Shah S, Huang CP, Doren DJ, Rykov SA, Chen JG, Barteau MA (2003) Appl Phys Lett 83:4123

    Google Scholar 

  23. Nishikawa T, Nakajima T, Shinohara Y (2001) J Mol Struct THEOCHEM 545(1–3):67–74

    Article  CAS  Google Scholar 

  24. Dhayal M, Sharma SD, Kant C, Saini KK, Jain SC (2008) J Surf Sci 602:1149

    Article  CAS  Google Scholar 

  25. Yen C-C, Wang DY, Shih M-H, Chang LS, Shih HC (2010) Appl Surf Sci 22:6865–6870

    Article  Google Scholar 

  26. Jiao F, Angew HF (2009) Chem Int Ed 48:1841

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Authors are thankful to the Director, National Physical Laboratory, New Delhi for his keen interest and continuous encouragement to carry out this work. One of the authors Dr. Sunil Dutta Sharma is thankful to Department of Science and Technology for the financial assistance. We are also thankful to Dr. A. Basu, Dr. Shanta Chawla and Dr. D. P. Singh for their help in the characterization of these samples.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. K. Saini.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Singh, D., Singh, N., Sharma, S.D. et al. Bandgap modification of TiO2 sol–gel films by Fe and Ni doping. J Sol-Gel Sci Technol 58, 269–276 (2011). https://doi.org/10.1007/s10971-010-2387-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-010-2387-2

Keywords

Navigation