Skip to main content

Advertisement

Log in

Structural genomics as an approach towards understanding the biology of tuberculosis

  • Original Paper
  • Published:
Journal of Structural and Functional Genomics

Abstract

Tuberculosis (TB) is a devastating disease of worldwide importance. The availability of the genome sequence of Mycobacterium tuberculosis (Mtb), the causative agent, has stimulated a large variety of genome-scale initiatives. These include international structural genomics efforts which have the dual aim of characterising potential new drug targets and addressing key aspects of the biology of Mtb. This review highlights the various ways in which structural analysis has illuminated the biological activities of Mtb gene products, which were previously of unknown or uncertain function. Key information comes from the protein fold, from bound ligands, solvent molecules, ions etc. or from unexpectedly modified amino acid residues. Most importantly, the three dimensional structure of a protein permits the integration of data from many sources, both bioinformatic and experimental, to develop testable functional hypotheses. This has led to many new insights into TB biology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Bloom BR, Murray CJ (1992) Science 257:1055

    Article  PubMed  CAS  Google Scholar 

  2. Corbett EL, Watt CJ, Walker N, Maher D, Williams BG, Raviglione MC, Dye C (2003) Arch Intern Med 163:1009

    Article  PubMed  Google Scholar 

  3. Bloom BR, Small PM (1998) New Engl J Med 338:677

    Article  PubMed  CAS  Google Scholar 

  4. Espinal MA (2003) Tuberculosis 83:44

    Article  PubMed  Google Scholar 

  5. O’Regan A, Joyce-Brady M (2001) Brit Med J 323:635

    Article  PubMed  CAS  Google Scholar 

  6. Brennan PJ, Nikaido H (1995) Annu Rev Biochem 64:29

    Article  PubMed  CAS  Google Scholar 

  7. Stewart GR, Robertson BD, Young DB (2003) Nature Rev Microbiol 1:97

    Article  CAS  Google Scholar 

  8. Munoz-Elias EJ, McKinney JD (2005) Nature Med 11:638

    Article  PubMed  CAS  Google Scholar 

  9. Smith CV, Sharma V, Sacchettini JC (2004) Tuberculosis 84:45

    Article  PubMed  Google Scholar 

  10. Cole ST, Brosch R, Parkhill J, Garnier T, Churcher C, Harris D, Gordon SV, Eiglmeier K, Gas S, Barry CE III, Tekaia F, Badcock K, Basham D, Brown D, Chillingworth T, Connor R, Davies R, Devlin K, Feltwell T, Gentles S, Hamlin N, Holroyd S, Hornsby T, Jagels K, Barrell BG (1998) Nature 393:537

    Article  PubMed  CAS  Google Scholar 

  11. Gomez M, Johnson S, Gennaro ML (2000) Infect Immun 68:2323

    Article  PubMed  CAS  Google Scholar 

  12. Makita Y, Terai G, Mitaku S, Takagi T, Nakai K (2002) Genome Inform 13:297

    CAS  Google Scholar 

  13. Sherman DR, Voskuil M, Schnappinger D, Liao R, Harrell MI, Schoolnik GK (2001) Proc Natl Acad Sci USA 98:7534

    Article  PubMed  CAS  Google Scholar 

  14. Wilson M, DeRisi J, Kristensen HH, Imboden P, Rane S, Brown PO, Schoolnik GK (1999) Proc Natl Acad Sci USA 96:12833

    Article  PubMed  CAS  Google Scholar 

  15. Rachmann H, Strong M, Ulrichs T, Grode L, Schuchhardt J, Mollenkopf H, Kosmiadi GA, Eisenberg D, Kaufmann SH (2006) Infect Immun 74:1233

    Article  Google Scholar 

  16. Sassetti CM, Boyd DH, Rubin EJ (2003) Mol Microbiol 48:77

    Article  PubMed  CAS  Google Scholar 

  17. Sassetti CM, Rubin EJ (2003) Proc Natl Acad Sci USA 100:12989

    Article  PubMed  CAS  Google Scholar 

  18. Rengarajan J, Bloom BR, Rubin EJ (2005) Proc Natl Acad Sci USA 102:8327

    Article  PubMed  CAS  Google Scholar 

  19. Terwilliger TC, Park MS, Waldo GS, Berendzen J, Hung L-W, Kim C-Y, Smith CV, Sacchettini JC, Bellinzoni M, Bossi R, De Rossi E, Mattevi A, Milano A, Riccardi G, Rizi M, Roberts MM, Coker AR, Fossati G, Mascagni P, Coates ARM, Wood SP, Goulding CW, Apostol MI, Anderson DH, Gill HS, Eisenberg DS, Taneja B, Mande S, Pohl E, Lamzin V, Tucker P, Wilmanns M, Colovos C, Meyer-Klaucke W, Munro AW, McLean KJ, Marshall KR, Leys D, Yang JK, Yoon H-J, Lee BI, Lee MG, Kwak JE, Han BW, Lee JY, Baek S-H, Suh SW, Komen MM, Arcus VL, Baker EN, Lott JS, Jacobs W, Alber T, Rupp B (2003) Tuberculosis 83:223

    Article  PubMed  CAS  Google Scholar 

  20. Watson JD, Laskowski RA, Thornton JM (2005) Curr Opin Struct Biol 15:275

    Article  PubMed  CAS  Google Scholar 

  21. Eisenstein E, Gilliland GL, Herzberg O, Moult J, Orban J, Poljak RJ, Banerjei L, Richardson D, Howard AJ (2000) Curr Opin Biotechnol 11:25

    Article  PubMed  CAS  Google Scholar 

  22. Teichmann SA, Murzin AG, Chothia C (2001) Curr Opin Struct Biol 11:354

    Article  PubMed  CAS  Google Scholar 

  23. Zhang C, Kim S-H (2003) Curr Opin Chem Biol 7:1

    Article  CAS  Google Scholar 

  24. Yakunin AF, Yee AA, Savchenko A, Edwards AM, Arrowsmith CH (2004) Curr Opin Chem Biol 8:1

    Article  Google Scholar 

  25. Castell A, Johansson P, Unge T, Jones TA, Backbro K (2005) Protein Sci 14:1850

    Article  PubMed  CAS  Google Scholar 

  26. Johansson P, Castell A, Jones TA, Backbro K (2006) Protein Sci 15:2300

    Article  PubMed  CAS  Google Scholar 

  27. Biswal BK, Cherney MM, Wang M, Garen C, James MNG (2005) Acta Crystallogr sect D 61:1492

    Article  Google Scholar 

  28. Arcus VL, Backbro K, Roos A, Daniel EL, Baker EN (2004) J Biol Chem 279:16471

    Article  PubMed  CAS  Google Scholar 

  29. Strong M, Sawaya MR, Wang S, Phillips M, Cascio D, Eisenberg D (2006) Proc Natl Acad Sci USA 103:8060

    Article  PubMed  CAS  Google Scholar 

  30. Huang C-C, Smith CV, Glickman MS, Jacobs WR, Sacchettini JC (2002) J Biol Chem 277:11559

    Article  PubMed  CAS  Google Scholar 

  31. Hegde SS, Vetting MW, Roderick SL, Mitchenall LA, Maxwell A, Takiff HE, Blanchard JS (2005) Science 308:1480

    Article  PubMed  CAS  Google Scholar 

  32. Kim KK, Yokota H, Kim S-H (1999) Nature 400:787

    Article  PubMed  CAS  Google Scholar 

  33. Mueser TC, Nossal NG, Hyde CC (1996) Cell 85:1101

    Article  PubMed  CAS  Google Scholar 

  34. Clissold PM, Ponting CP (2000) Curr Biol 10:R888

    Article  PubMed  CAS  Google Scholar 

  35. Gerdes K, Christensen SK, Lobner-Olesen A (2005) Nat Rev Microbiol 3:371

    Article  PubMed  CAS  Google Scholar 

  36. Arcus VL, Rainey PB, Turner SJ (2005) Trends Microbiol 13:360

    Article  PubMed  CAS  Google Scholar 

  37. Ma Q, Zhao X, Eddine AN, Geerlof A, Li X, Cronan JE, Kaufmann SHE, Wilmanns M (2006) Proc Natl Acad Sci USA 103:8662

    Article  PubMed  CAS  Google Scholar 

  38. Newton GL, Fahey RC (2002) Arch Microbiol 178:388

    Article  PubMed  CAS  Google Scholar 

  39. Newton GL, Av-Gay Y, Fahey RC (2000) J Bacteriol 182:6958

    Article  PubMed  CAS  Google Scholar 

  40. McCarthy AA, Peterson NA, Knijff R, Baker EN (2004) J Mol Biol 335:1131

    Article  PubMed  CAS  Google Scholar 

  41. Lott JS, Paget B, Johnston JM, Delbaere LTJ, Sigrell-Simon JA, Banfield MJ, Baker EN (2006) J Biol Chem 281:22131

    Article  PubMed  CAS  Google Scholar 

  42. Draker K-A, Boehr DD, Elowe NH, Noga TJ, Wright GD (2003) J Antibiot (Tokyo) 56:135

    CAS  Google Scholar 

  43. Vetting MW, de Carvalho LPS, Yu M, Hegde SS, Magnet S, Roderick SL, Blanchard JS (2005) Arch Biochem Biophys 433:212

    Article  PubMed  CAS  Google Scholar 

  44. Rodriguez GM, Voskuil MI, Gold B, Schoolnik GK, Smith I (2002) Infect Immun 70:3371

    Article  PubMed  CAS  Google Scholar 

  45. LaMarca BBD, Zhu W, Arceneaux JEL, Byers BR, Lundrigan MD (2004) J Bacteriol 186:374

    Article  PubMed  CAS  Google Scholar 

  46. Krithika R, Marathe U, Saxena P, Ansari MZ, Mohanty D, Ghokhale RS (2006) Proc Natl Acad Sci USA 103:2069

    Article  PubMed  CAS  Google Scholar 

  47. Watkins HA, Baker EN (2006) J Bacteriol 188:3589

    Article  PubMed  CAS  Google Scholar 

  48. Johnston JM, Arcus VL, Morton CJ, Parker MW, Baker EN (2003) J Bacteriol 185:4057

    Article  PubMed  CAS  Google Scholar 

  49. Monzingo AF, Gao J, Qiu J, Georgiou G, Robertus JD (2003) J Mol Biol 332:1015

    Article  PubMed  CAS  Google Scholar 

  50. Camus JC, Pryor MJ, Medigue C, Cole ST (2002) Microbiology 148:2967

    PubMed  CAS  Google Scholar 

Download references

Acknowledgements

I gratefully acknowledge Heather Baker and Tom Caradoc-Davies for help with the illustrations used in this article; Jim Sacchettini, David Eisenberg, Tom Terwilliger and Matthias Wilmanns for helpful suggestions; and the wider membership of the International TB Structural Genomics Consortium for the stimulating environment in which this research has taken place. Research at the University of Auckland is funded by the Health Research Council of New Zealand, the Foundation for Research, Science and Technology and the Maurice Wilkins Centre, through the Centres of Research Excellence fund, and is the work of many outstanding postdoctoral and graduate student researchers.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Edward N. Baker.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Baker, E.N. Structural genomics as an approach towards understanding the biology of tuberculosis. J Struct Funct Genomics 8, 57–65 (2007). https://doi.org/10.1007/s10969-007-9020-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10969-007-9020-9

Keywords

Navigation