Skip to main content
Log in

Investigation of Sr uptake by birnessite-type sorbents from seawater

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

Sorption of micro- and microamounts of Sr from seawater has been studied using granulated Na-birnessite. Distribution coefficients of 90Sr in the natural seawater are 0.8–1.2 × 103 ml g−1, in the model seawater they are 1.6–1.8 × 103 ml g−1. Application of Na-birnessite was shown to be prospective in sorption–desorption–regeneration regime. In dynamic sorption conditions, over 150 bed volumes of seawater can be purified till 5% breakthrough occurs at feed rate 10 BV h−1. Na-birnessite can be used for 90Sr radionuclide removal from liquid radioactive wastes containing seawater.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Farid O, Shih K, Lee WE, Yamana H (2013) Fukushima: the current situation and future plans. In: Lee WE, Ojovan MI, Jantzen CM (eds) Radioactive waste management and contaminated site clean-up. Woodhead Publishing, Cambridge, pp 744e–776e

    Chapter  Google Scholar 

  2. FUKUSHIMA DAIICHI: ANS Committee Report. http://fukushima.ans.org/. http://fukushima.ans.org/report/Fukushima_report.pdf. Accessed 12 Mar 2018

  3. Zheleznov VV, Vysotskii VL (2002) Application of fibrous carbon ferrocyanide sorbents for removing cesium and cobalt from large volumes of sea water. At Energy 92:493–500

    Article  CAS  Google Scholar 

  4. Malyshev SP (1999) Small mobile installation for reprocessing of radioactive waste from technological circuits of nuclear power facilities of nuclear submarines subject to recycling. In: Sarkisov AA, du Clos AT (eds) Analysis of risks associated with nuclear submarine decommissioning, dismantling and disposal. Springer, Dordrecht, pp 405–418

    Chapter  Google Scholar 

  5. Avramenko VA, Egorin AM, Papynov EK et al (2017) Processes for treatment of liquid radioactive waste containing seawater. Radiochemistry 59:407–413

    Article  CAS  Google Scholar 

  6. Harjula R, Lehto J, Tusa EH, Paavola A (1994) Industrial scale removal of cesium with hexacyanoferrate exchanger—process development. Nucl Technol 107:272–278

    Article  CAS  Google Scholar 

  7. Milyutin VV, Nekrasova NA, Kharitonov OV et al (2016) Sorption technologies in modern applied radiochemistry. Sorpt Chromatogr Process 16:313–322 (in Russian)

    CAS  Google Scholar 

  8. Bengtsson GB, Bortun AI, Strelko VV (1996) Strontium binding properties of inorganic adsorbents. J Radioanal Nucl Chem Art 204:75–82

    Article  CAS  Google Scholar 

  9. Marinin DV, Brown GN (2000) Studies of sorbent/ion-exchange materials for the removal of radioactive strontium from liquid radioactive waste and high hardness groundwaters. Waste Manag 20:545–553

    Article  CAS  Google Scholar 

  10. Sachse A, Merceille A, Barré Y et al (2012) Macroporous LTA-monoliths for in-flow removal of radioactive strontium from aqueous effluents: Application to the case of Fukushima. Microporous Mesoporous Mater 164:251–258

    Article  CAS  Google Scholar 

  11. Brähler G, Zulauf A, Avramenko VA, Sokolnitskaya T (2014) Absorbers for removal of Sr-90 from sea water at FUKUSHIMA Site-14184. http://www.wmsym.org/. http://www.wmsym.org/archives/2014/papers/14184.pdf. Accessed 12 Mar 2018

  12. Avramenko VA, Burkov IS, Golikov AP et al (2004) Sorption of strontium by sorptive-reagent materials. Russ J Phys Chem A 78:407–410

    Google Scholar 

  13. Sokol’nitskaya TA, Avramenko VA, Burkov IS et al (2004) Precipitation during the absorption of strontium with sorptive-reagent materials. Russ J Phys Chem A 78:411–415

    Google Scholar 

  14. Lehto J, Brodkin L, Harjula R, Tusa E (1999) Separation of radioactive strontium from alkaline nuclear waste solutions with the highly effective ion exchanger SrTreat. Nucl Technol 127:81–87

    Article  CAS  Google Scholar 

  15. Logunov MV, Skobtsov AS, Soldatov BV et al (2004) Research and application of inorganic selective sorbents at Mayak PA. C R Chim 7:1185–1190

    Article  CAS  Google Scholar 

  16. Voroshilov YA, Logunov MV, Prokof’ev NN, Zemlina NP (2003) ISM-S sorbent: properties and tests in a sorption process for treatment of water from accumulating basin of the Mayak production association to remove 90Sr. Radiochemistry 45:64–67

    Article  CAS  Google Scholar 

  17. Sylvester P, Clearfield A (1998) The removal of strontium and cesium from simulated Hanford groundwater using inorganic ion exchange materials. Solv Extr Ion Exch 16:1527–1539

    Article  CAS  Google Scholar 

  18. Avramenko VA, Zheleznov VV, Kaplun EV et al (2001) Sorption recovery of strontium from seawater. Radiochemistry 43:433–436

    Article  CAS  Google Scholar 

  19. Milyutin VV, Nekrasova NA, Yanicheva NY et al (2017) Sorption of cesium and strontium radionuclides onto crystalline alkali metal titanosilicates. Radiochemistry 59:65–69

    Article  CAS  Google Scholar 

  20. Hasany SM, Chaudhary MH (1981) Adsorption studies of strontium on manganese dioxide from aqueous solutions. Int J Appl Radiat Isot 32:899–904

    Article  CAS  Google Scholar 

  21. Singh Om Vir, Tandon SN (1977) Studies on the adsorption of cesium and strontium radionuclides on hydrated manganese oxide. Int J Appl Radiat Isot 28:701–704

    Article  CAS  PubMed  Google Scholar 

  22. Kirillov SA, Lisnycha TV, Pendelyuk OI (2006) Appraisal of mixed amorphous manganese oxide/titanium oxide sorbents for the removal of strontium-90 from solutions, with special reference to Savannah river site and chernobyl radioactive waste simulants. Adsorpt Sci Technol 24:895–906

    Article  CAS  Google Scholar 

  23. Pendelyuk OI, Lisnycha TV, Strelko VV, Kirillov SA (2005) Amorphous MnO2–TiO2 composites as sorbents for Sr2+ and UO2 2+. Adsorption 11:799–804

    Article  Google Scholar 

  24. Feng Q, Kanoh H, Ooi K (1999) Manganese oxide porous crystals. J Mater Chem 9:319–333

    Article  CAS  Google Scholar 

  25. Gray MJ, Malati MA (1979) Adsorption from aqueous solution by δ-manganese dioxide I. Adsorption of the alkaline-earth cations. J Chem Technol Biotechnol 29:127–134

    Article  CAS  Google Scholar 

  26. Al-Attar L, Dyer A (2007) Ion exchange in birnessite. Land Contam Reclam 15:427–436

    Article  Google Scholar 

  27. Dyer A, Pillinger M, Harjula R, Amin S (2000) Sorption characteristics of radionuclides on synthetic birnessite-type layered manganese oxides. J Mater Chem 10:1867–1874

    Article  CAS  Google Scholar 

  28. Feng Q, Kanoh H, Miyai Y, Ooi K (1995) Metal ion extraction/insertion reactions with todorokite-type manganese oxide in the aqueous phase. Chem Mater 7:1722–1727

    Article  CAS  Google Scholar 

  29. Feng Q, Yanagisawa K, Yamasaki N (1996) Transformation of manganese oxides from layered structures to tunnel structures. Chem Commun 14:1607–1608

    Article  Google Scholar 

  30. Feng Q, Yanagisawa K, Yamasaki N (1998) Hydrothermal soft chemical process for synthesis of manganese oxides with tunnel structures. J Porous Mater 5:153–162

    Article  CAS  Google Scholar 

  31. Dyer A, Pillinger M, Newton J et al (2000) Sorption behavior of radionuclides on crystalline synthetic tunnel manganese oxides. Chem Mater 12:3798–3804

    Article  CAS  Google Scholar 

  32. Ivanets AI, Katsoshvili LL, Krivoshapkin PV et al (2017) Sorption of strontium ions onto mesoporous manganese oxide of OMS-2 type. Radiochemistry 59:264–271

    Article  CAS  Google Scholar 

  33. White DA, Labayru R (1991) Synthesis of a manganese dioxide-silica hydrous composite and its properties as a sorption material for strontium. Ind Eng Chem Res 30:207–210

    Article  CAS  Google Scholar 

  34. Valsala TP, Joseph A, Sonar NL et al (2010) Separation of strontium from low level radioactive waste solutions using hydrous manganese dioxide composite materials. J Nucl Mater 404:138–143

    Article  CAS  Google Scholar 

  35. Hong H-J, Kim B-G, Hong J et al (2017) Enhanced Sr adsorption performance of MnO2-alginate beads in seawater and evaluation of its mechanism. Chem Eng J 319:163–169

    Article  CAS  Google Scholar 

  36. Veleshko AN, Kulyukhin SA, Veleshko IE et al (2008) Sorption of radionuclides from solutions with composite materials based on Mikoton natural biopolymer. Radiochemistry 50:508–514

    Article  CAS  Google Scholar 

  37. Rao SVS, Mani AGS, Karua S et al (2016) Treatment of liquid wastes using composite resins. J Radioanal Nucl Chem 307:463–469

    Article  CAS  Google Scholar 

  38. Kester DR, Duedall IW, Connors DN, Pytkowicz RM (1967) Preparation of artificial seawater1. Limnol Oceanogr 12:176–179

    Article  CAS  Google Scholar 

  39. Sr Resin. Eichrom Technologies Inc. https://www.eichrom.com/eichrom/products/sr-resin/. Accessed 8 Mar 2018

  40. SR Resin product sheet. In: TrisKem International. http://www.triskem-international.com/ru/iso_album/ft_resine_sr_ru_160927.pdf. Accessed 8 Mar 2018

  41. Drits VA, Silvester E, Gorshkov AI, Manceau A (1997) Structure of synthetic monoclinic Na-rich birnessite and hexagonal birnessite; I, results from X-ray diffraction and selected-area electron diffraction. Am Miner 82:946–961

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Equipment of CUC “Far Eastern Center of structural investigations” was used in the work. The work was carried out under the financial support of Russian Science Foundation (Project No. 14-13-00135).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrei Egorin.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Egorin, A., Sokolnitskaya, T., Azarova, Y. et al. Investigation of Sr uptake by birnessite-type sorbents from seawater. J Radioanal Nucl Chem 317, 243–251 (2018). https://doi.org/10.1007/s10967-018-5905-2

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-018-5905-2

Keywords

Navigation