Skip to main content
Log in

Sorption and speciation of iodine in boreal forest soil

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

The speciation and sorption of iodine was studied on humus and mineral soil samples in the initial chemical forms of iodide and iodate. Iodate was reduced to iodide in significant amounts especially in anaerobic soil conditions and in low pH. An unidentified, possible organo–iodine species was detected in humus samples and in aerobic mineral soil at incubation times of 1–21 days and in low pH (4–5). The overall retention of iodide and iodate on Olkiluoto mineral soil was very weak and organic matter proved to be the main sorbent for iodine.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Posiva (2009) Olkiluoto site description 2008—Part 1. Posiva Report 2009-01

  2. Posiva (2013) Safety case for the disposal of spent nuclear fuel at Olkiluoto—models and data for the repository system 2012. Posiva Report 2013-01

  3. Raiko H (2005) Disposal canister for spent nuclear fuel—design report. Posiva Report 2005-02

  4. Hjerpe T, Ikonen ATK, Broed R (2010) Biosphere assessment report 2009. Posiva Report 2010-03

  5. Larivière D, Guérin N (2010) Natural Radioactivity. In: Atwood DA (ed) Radionuclides in the environment, 1st edn. Wiley, Chichester, pp 1–18

    Google Scholar 

  6. Hu Q, Zhao P, Moran JE, Seaman JC (2005) Sorption and transport of iodine species in sediments from the Savannah River and Hanford Sites. J Contam Hydrol 78(3):185–205. doi:10.1016/j.jconhyd.2005.05.007

    Article  CAS  Google Scholar 

  7. Um W, Serne RJ, Krupka KM (2004) Linearity and reversibility of iodide adsorption on sediments from Hanford, Washington under water saturated conditions. Water Res 38(8):2009–2016. doi:10.1016/j.watres.2004.01.026

    Article  CAS  Google Scholar 

  8. Xu C, Zhang S, Ho Y-F, Miller EJ, Roberts KA, Li H-P, Schwehr KA, Otosaka S, Kaplan DI, Brinkmeyer R, Yeager CM, Santschi PH (2011) Is soil natural organic matter a sink or source for mobile radioiodine (129I) at the Savannah River site? Geochim Cosmochim Acta 75(19):5716–5735. doi:10.1016/j.gca.2011.07.011

    Article  CAS  Google Scholar 

  9. Salminen R, Batista MJ, Bidovec M, Demetriades A, De Vivo B, De Vos W, Duris M, Gilucis A, Gregorauskiene V, Halamic J, Heitzmann P, Lima A, Jordan G, Klaver G, Klein P, Lis J, Locutura J, Marsina K, Mazreku A, O’Connor PJ, Olsson SÅ, Ottesen R-T, Petersell V, Plant JA, Reeder S, Salpeteur I, Sandström H, Siewers U, Steenfelt A, Tarvainen T (2007) The geochemical atlas of Europe. Part 1—background information, methodology and maps. Geological survey of Finland, Espoo, Finland

  10. Koch-Steindl H, Pröhl G (2001) Considerations on the behaviour of long-lived radionuclides in the soil. Radiat Environ Biophys 40(2):93–104. doi:10.1007/s004110100098

    Article  CAS  Google Scholar 

  11. Muramatsu Y, Yoshida S, Fehn U, Amachi S, Ohmomo Y (2004) Studies with natural and anthropogenic iodine isotopes: iodine distribution and cycling in the global environment. J Environ Radioact 74(1–3):221–232. doi:10.1016/j.jenvrad.2004.01.011

    Article  CAS  Google Scholar 

  12. Yamaguchi N, Nakano M, Tanida H, Fujiwara H, Kihou N (2006) Redox reaction of iodine in paddy soil investigated by field observation and the I K-Edge XANES fingerprinting method. J Environ Radioact 86(2):212–226. doi:10.1016/j.jenvrad.2005.09.001

    Article  CAS  Google Scholar 

  13. Muramatsu S, Yoshida Y (1999) Effects of microorganisms on the fate of iodine in the soil environment. Geomicrobiol J 16(1):85–93. doi:10.1080/014904599270776

    Article  Google Scholar 

  14. Amachi S, Fujii T, Shinoyama H, Muramatsu Y (2005) Microbial influences on the mobility and transformation of radioactive iodine in the environment. J Nucl Radiochem Sci 6(1):21–24. doi:10.14494/jnrs2000.6.21

    Article  CAS  Google Scholar 

  15. Kodama S, Takahashi Y, Okumura K, Uruga T (2006) Speciation of iodine in solid environmental samples by iodine K-edge XANES: application to soils and ferromanganese oxides. Sci Total Environ 363(1–3):275–284. doi:10.1016/j.scitotenv.2006.01.004

    Article  CAS  Google Scholar 

  16. Schlegel ML, Reiller P, Mercier-Bion F, Barré N, Moulin V (2006) Molecular environment of iodine in naturally iodinated humic substances: insight from X-ray absorption spectroscopy. Geochim Cosmochim Acta 70(22):5536–5551. doi:10.1016/j.gca.2006.08.026

    Article  CAS  Google Scholar 

  17. Schwehr KA, Santschi PH, Kaplan DI, Yeager CM, Brinkmeyer R (2009) Organo-iodine formation in soils and aquifer sediments at ambient concentrations. Environ Sci Techol 43(19):7258–7264. doi:10.1021/es900795k

    Article  CAS  Google Scholar 

  18. Xu C, Miller E-J, Zhang S, Li H-P, Ho Y-F, Schwehr KA, Kaplan DI, Otosaka S, Roberts KA, Brinkmeyer R, Yeager CM, Santschi PH (2011) Sequestration and remobilization of radioiodine (129I) by soil organic matter and possible consequences of the remedial action at Savannah River site. Environ Sci Technol 45(23):9975–9983. doi:10.1021/es201343d

    Article  CAS  Google Scholar 

  19. Xu C, Chen H, Sugiyama Y, Zhang S, Li H-P, Ho Y-F, Chuang C-Y, Schwehr KA, Kaplan DI, Yeager C, Roberts KA, Hatcher PG, Santschi PH (2013) Novel molecular-level evidence of iodine binding to natural organic matter from Fourier transform ion cyclotron resonance mass spectrometry. Sci Total Environ 449:244–252. doi:10.1016/j.scitotenv.2013.01.064

    Article  CAS  Google Scholar 

  20. Zhang S, Du J, Xu C, Schwehr KA, Ho YF, Li HP, Roberts KA, Kaplan DI, Brinkmeyer R, Yeager CM, H-s Chang, Santschi PH (2011) Concentration-dependent mobility, retardation, and speciation of iodine in surface sediment from the Savannah River site. Environ Sci Technol 45(13):5543–5549. doi:10.1021/es1040442

    Article  CAS  Google Scholar 

  21. Yamaguchi N, Nakano M, Takamatsu R, Tanida H (2010) Inorganic iodine incorporation into soil organic matter: evidence from iodine K-edge X-ray absorption near-edge structure. J Environ Radioact 101(6):451–457. doi:10.1016/j.jenvrad.2008.06.003

    Article  CAS  Google Scholar 

  22. Evans GJ, Hammad KA (1995) Radioanalytical studies of iodine behaviour in the environment. J Radioanal Nucl Chem 192(2):239–247. doi:10.1007/bf02041727

    Article  CAS  Google Scholar 

  23. Shimamoto YS, Takahashi Y, Terada Y (2011) Formation of organic iodine supplied as iodide in a soil–water system in Chiba, Japan. Environ Sci Technol 45(6):2086–2092. doi:10.1021/es1032162

    Article  CAS  Google Scholar 

  24. Whitehead DC (1978) Iodine in soil profiles in relation to iron and aluminium oxides and organic matter. J Soil Sci 29(1):88–94. doi:10.1111/j.1365-2389.1978.tb02035.x

    Article  CAS  Google Scholar 

  25. Whitehead DC (1974) The sorption of iodide by soil components. J Sci Food Agr 25(1):73–79. doi:10.1002/jsfa.2740250109

    Article  CAS  Google Scholar 

  26. Fukui M, Fujikawa Y, Satta N (1996) Factors affecting interaction of radioiodide and iodate species with soil. J Environ Radioact 31(2):199–216. doi:10.1016/0265-931X(95)00039-D

    Article  CAS  Google Scholar 

  27. Kaplan DI, Serne RJ, Parker KE, Kutnyakov IV (2000) Iodide sorption to subsurface sediments and illitic minerals. Environ Sci Technol 34(3):399–405. doi:10.1021/es990220g

    Article  CAS  Google Scholar 

  28. Essington ME (2004) Soil and water chemistry: an integrative approach, 1st edn. CRC Press, Boca Raton

    Google Scholar 

  29. Kaplan DI (2003) Influence of surface charge of an Fe-oxide and an organic matter dominated soil on iodide and pertechnetate sorption. Radiochim Acta 91(3):173–178. doi:10.1524/ract.91.3.173.19977

    Article  CAS  Google Scholar 

  30. Sheppard M, Thibault DH, McMurry J, Smith PA (1995) Factors affecting the soil sorption of iodine. Water Air Soil Pollut 83(1–2):51–67. doi:10.1007/BF00482593

    Article  CAS  Google Scholar 

  31. Ticknor KV, Cho YH (1990) Interaction of iodide and iodate with granitic fracture-filling minerals. J Radioanal Nucl Chem 140(1):75–90. doi:10.1007/BF02037365

    Article  CAS  Google Scholar 

  32. Yoshida S, Muramatsu Y, Uchida S (1998) Soil-solution distribution coefficients, Kds, of Γ and IO3 for 68 Japanese soils. Radiochim Acta 82(1):293–297

    CAS  Google Scholar 

  33. Lahdenperä A-M (2009) Summary of the overburden studies of the soil pits OL-KK14, OL-KK15, OL-KK16, OL-KK17, OL-KK18 and OL-KK19 at Olkiluoto, Eurajoki in 2008. Posiva Working Report 2009-109

  34. B’Hymer C, Caruso JA (2006) Selenium speciation analysis using inductively coupled plasma-mass spectrometry. J Chromatogr A 1114(1):1–20. doi:10.1016/j.chroma.2006.02.063

    Article  Google Scholar 

  35. Han X, Cao L, Cheng H, Liu J, Xu Z (2012) Determination of iodine species in seaweed and seawater samples using ion-pair reversed phase high performance liquid chromatography coupled with inductively coupled plasma mass spectrometry. Anal Methods 4(10):3471–3477. doi:10.1039/C2AY25871D

    Article  CAS  Google Scholar 

  36. Chen Z, Megharaj M, Naidu R (2007) Speciation of iodate and iodide in seawater by non-suppressed ion chromatography with inductively coupled plasma mass spectrometry. Talanta 72(5):1842–1846. doi:10.1016/j.talanta.2007.02.014

    Article  CAS  Google Scholar 

  37. Shimamoto YS, Itai T, Takahashi Y (2010) Soil column experiments for iodate and iodide using K-edge XANES and HPLC–ICP-MS. J Geochem Explor 107(2):117–123. doi:10.1016/j.gexplo.2009.11.001

    Article  CAS  Google Scholar 

  38. Nie Z, Zheng L, Feng W, Liu C (2014) Development of anion-exchange high-performance liquid chromatography-inductively coupled plasma mass spectrometry methods for the speciation analysis of inorganic selenium and iodine in groundwater. Anal Methods 6(20):8380–8387. doi:10.1039/C4AY01186D

    Article  CAS  Google Scholar 

  39. Han C, Sun J, Cheng H, Liu J, Xu Z (2014) Speciation analysis of urine iodine by ion-pair reversed-phase liquid chromatography and inductively coupled plasma mass spectrometry. Anal Methods 6(14):5369–5375. doi:10.1039/C4AY00396A

    Article  CAS  Google Scholar 

  40. Söderlund M, Hakanen M, Lehto J (2015) Sorption of niobium on boreal forest soil. Radiochim Acta 103(12):859–869

    Article  Google Scholar 

  41. Söderlund M, Virtanen S, Välimaa I, Lempinen J, Hakanen M, Lehto J (2016) Sorption of cesium on boreal forest soil II. The effect of time, incubation conditions, pH and competing cations. J Radioanal Nucl Chem 309(2):647–657. doi:10.1007/s10967-015-4628-x

    Google Scholar 

  42. Söderlund M, Virkanen J, Holgersson S, Lehto J (2016) Sorption and speciation of selenium in boreal forest soil. J Environ Radioact 146:220–231. doi:10.1016/j.jenvrad.2016.08.006

    Article  Google Scholar 

  43. Haapanen A (2014) Results of monitoring at Olkiluoto in 2012—environment. Posiva Working Report 2013-45

  44. Haapanen R, Aro L, Helin J, Hjerpe T, Ikonen ATK, Kirkkala T, Koivunen S, Lahdenperä A-M, Puhakka L, Rinne M, Salo T (2009) Olkiluoto biosphere description 2009. Posiva Report 2009-2

  45. Lusa M, Lempinen J, Ahola H, Söderlund M, Ikonen ATK, Lahdenperä A-M, Lehto J (2014) Sorption of cesium in young till soils. Radiochim Acta 102(7):645–658. doi:10.1515/ract-2014-2195

    Article  CAS  Google Scholar 

  46. Yoshida S, Muramatsu Y, Katou S, Sekimoto H (2007) Determination of the chemical forms of iodine with IC-ICP-MS and its application to environmental samples. J Radioanal Nucl Chem 273(1):211–214. doi:10.1007/s10967-007-0738-4

    Article  CAS  Google Scholar 

  47. Yang H, Liu W, Li B, Zhang H, Liu X, Chen D (2007) Speciation analysis for iodine in groundwater using high performance liquid chromatography–inductively coupled plasma-mass spectrometry (HPLC-ICP-MS). Geostand Geoanal Res 31(4):345–351. doi:10.1111/j.1751-908X.2007.00132.x

    Article  CAS  Google Scholar 

  48. Takeno N (2005) Atlas of Eh-pH diagrams—intercomparison of thermodynamic databases. vol geological Survey of Japan Open File Report No. 419

  49. Keller JK, Weisenhorn PB, Megonigal JP (2009) Humic acids as electron acceptors in wetland decomposition. Soil Biol Biochem 41(7):1518–1522. doi:10.1016/j.soilbio.2009.04.008

    Article  CAS  Google Scholar 

  50. Lovley DR, Coates JD, Blunt-Harris EL, Phillips JP, Woodward JC (1996) Humic substances as electron acceptors for microbial respiration. Nature 382(6590):445–448

    Article  CAS  Google Scholar 

  51. Lusa M, Blomberg H, Aromaa H, Knuutinen J, Lehto J (2015) Sorption of radioiodide in an acidic, nutrient-poor boreal bog: insights into the microbial impact. J Environ Radioact 143:110–122. doi:10.1016/j.jenvrad.2015.02.022

    Article  CAS  Google Scholar 

  52. Muramatsu Y, Yoshida S, Uchida S, Hasebe A (1996) Iodine desorption from rice paddy soil. Water Air Soil Pollut 86(1–4):359–371. doi:10.1007/BF00279167

    Article  CAS  Google Scholar 

  53. Bostock AC, Shaw G, Bell JNB (2003) The volatilisation and sorption of 129I in coniferous forest, grassland and frozen soils. J Environ Radioact 70(1–2):29–42. doi:10.1016/S0265-931X(03)00120-6

    Article  CAS  Google Scholar 

  54. Assemi S, Erten HN (1994) Sorption of radioiodine on organic rich soil, clay minerals and alumina. J Radioanal Nucl Chem 178(1):193–204. doi:10.1007/BF02068670

    Article  CAS  Google Scholar 

  55. Bunzl K, Schimmack W (1988) Effect of microbial biomass reduction by gamma-irradiation on the sorption of 137Cs, 85Sr, 139Ce, 57Co, 109Cd, 65Zn, 103Ru, 95mTc and 131I by soils. Radiat Environ Biophys 27(2):165–176. doi:10.1007/BF01214606

    Article  CAS  Google Scholar 

  56. Seki M, J-i Oikawa, Taguchi T, Ohnuki T, Muramatsu Y, Sakamoto K, Amachi S (2013) Laccase-catalyzed oxidation of iodide and formation of organically bound iodine in soils. Environ Sci Techol 47(1):390–397. doi:10.1021/es303228n

    Article  CAS  Google Scholar 

  57. Amachi S, Kamagata Y, Kanagawa T, Muramatsu Y (2001) Bacteria mediate methylation of iodine in marine and terrestrial environments. Appl Environ Microbiol 67(6):2718–2722. doi:10.1128/aem.67.6.2718-2722.2001

    Article  CAS  Google Scholar 

  58. Amachi S, Kasahara M, Hanada S, Kamagata Y, Shinoyama H, Fujii T, Muramatsu Y (2003) Microbial participation in iodine volatilization from soils. Environ Sci Technol 37(17):3885–3890. doi:10.1021/es0210751

    Article  CAS  Google Scholar 

  59. Becker WM, Kleinsmith LJ, Hardin J (2003) The world of the cell, 2nd edn. Benjamin Cummings, San Francisco

    Google Scholar 

  60. Xu C, Kaplan DI, Zhang S, Athon M, Ho Y-F, Li H-P, Yeager CM, Schwehr KA, Grandbois R, Wellman D, Santschi PH (2015) Radioiodine sorption/desorption and speciation transformation by subsurface sediments from the Hanford Site. J Environ Radioact 139:43–55. doi:10.1016/j.jenvrad.2014.09.012

    Article  CAS  Google Scholar 

  61. Steinberg SM, Kimble GM, Schmett GT, Emerson DW, Turner MF, Rudin M (2008) Abiotic reaction of iodate with sphagnum peat and other natural organic matter. J Radioanal Nucl Chem 277(1):185–191. doi:10.1007/s10967-008-0728-1

    Article  CAS  Google Scholar 

  62. Ashworth DJ, Shaw G (2006) Effects of moisture content and redox potential on in situ K d values for radioiodine in soil. Sci Total Environ 359(1–3):244–254. doi:10.1016/j.scitotenv.2005.04.018

    Article  CAS  Google Scholar 

  63. Francois R (1987) The influence of humic substances on the geochemistry of iodine in nearshore and hemipelagic marine sediments. Geochim Cosmochim Acta 51(9):2417–2427. doi:10.1016/0016-7037(87)90294-8

    Article  CAS  Google Scholar 

  64. Huang T-S, Lu F-J (1991) Iodide binding by humic acid. Environm Toxicol Chem 10(2):179–184. doi:10.1002/etc.5620100205

    Article  Google Scholar 

  65. Warner JA, Casey WH, Dahlgren RA (2000) Interaction kinetics of I2(aq) with substituted phenols and humic substances. Environ Sci Technol 34(15):3180–3185. doi:10.1021/es991228t

    Article  CAS  Google Scholar 

  66. Kalyani DC, Phugare SS, Shedbalkar UU, Jadhav JP (2010) Purification and characterization of a bacterial peroxidase from the isolated strain Pseudomonas sp. SUK1 and its application for textile dye decolorization. Ann Microbiol 61(3):483–491. doi:10.1007/s13213-010-0162-9

    Article  Google Scholar 

  67. Hochman A, Goldberg I (1991) Purification and characterization of a catalase-peroxidase and a typical catalase from the bacterium Klebsiella pneumoniae. Biochim Biophys Acta 3:299–307. doi:10.1016/0167-4838(91)90544-A

    Article  Google Scholar 

  68. Gottardi W (2000) Iodine and Iodine Compounds. In: Block SS (ed) Disinfection, Sterilization, and Preservation, 5th edn. Lippincott, Williams and Wilkins, Philadelphia, pp 159–184

    Google Scholar 

  69. Nagy K, Körtvélyesi T, Nagypál I (2003) Iodine hydrolysis equilibrium. J Solut Chem 32(5):385–393. doi:10.1023/a:1024507310112

    Article  CAS  Google Scholar 

  70. Steinberg SM, Schmett GT, Kimble G, Emerson DW, Turner MF, Rudin M (2008) Immobilization of fission iodine by reaction with insoluble natural organic matter. J Radioanal Nucl Chem 277(1):175–183. doi:10.1007/s10967-008-0727-2

    Article  CAS  Google Scholar 

  71. Hansen V, Roos P, Aldahan A, Hou X, Possnert G (2011) Partition of iodine (129I and 127I) isotopes in soils and marine sediments. J Environ Radioact 102(12):1096–1104. doi:10.1016/j.jenvrad.2011.07.005

    Article  CAS  Google Scholar 

  72. Qiao J, Hansen V, Hou X, Aldahan A, Possnert G (2012) Speciation analysis of 129I, 137Cs, 232Th, 238U, 239Pu and 240Pu in environmental soil and sediment. Appl Radiat Isotopes 70(8):1698–1708. doi:10.1016/j.apradiso.2012.04.006

    Article  CAS  Google Scholar 

  73. Bird GA, Schwartz W (1997) Distribution coefficients, Kds, for iodide in Canadian shield lake sediments under oxic and anoxic conditions. J Environ Radioact 35(3):261–279. doi:10.1016/S0265-931X(96)00062-8

    Article  CAS  Google Scholar 

  74. Lieser ΚH, Steinkopff TH (1989) Chemistry of radioactive iodine in the hydrosphere and in the geosphere. Radiochim Acta 46(1):49–55. doi:10.1524/ract.1989.46.1.49

    CAS  Google Scholar 

  75. Söderlund M, Lusa M, Virtanen S, Välimaa I, Hakanen M, Lehto J, Lahdenperä A-M (2014) Distribution coefficients of caesium, chlorine, iodine, niobium, selenium and technetium on Olkiluoto soils. Posiva Working Report 2013-68

  76. Sheppard MI, Thibault DH (1990) Default soil solid/liquid partition coefficients, Kds, for four major soil types: a compendium. Health Phys 59:471–482

    CAS  Google Scholar 

  77. Muramatsu Y, Uchida S, Sriyotha P, Sriyotha K (1990) Some considerations on the sorption and desorption phenomena of iodide and iodate on soil. Water Air Soil Pollut 49(1–2):125–138. doi:10.1007/BF00279516

    Article  CAS  Google Scholar 

  78. Ashworth DJ, Shaw G, Butler AP, Ciciani L (2003) Soil transport and plant uptake of radio-iodine from near-surface groundwater. J Environ Radioact 70(1–2):99–114. doi:10.1016/S0265-931X(03)00121-8

    Article  CAS  Google Scholar 

  79. Gil-García C, Tagami K, Uchida S, Rigol A, Vidal M (2009) New best estimates for radionuclide solid–liquid distribution coefficients in soils. Part 3: miscellany of radionuclides (Cd Co, Ni, Zn, I, Se, Sb, Pu, Am, and others). J Environ Radioact 100(9):704–715. doi:10.1016/j.jenvrad.2008.12.001

    Article  Google Scholar 

  80. Sposito G (2008) The chemistry of soils, 2nd edn. Oxford University Press, New York

    Google Scholar 

  81. Fuhrmann M, Bajt S, Schoonen MAA (1998) Sorption of iodine on minerals investigated by X-ray absorption near edge structure (XANES) and 125I tracer sorption experiments. Appl Geochem 13(2):127–141. doi:10.1016/S0883-2927(97)00068-1

    Article  CAS  Google Scholar 

  82. Sazarashi M, Ikeda Y, Seki R, Yoshikawa H (1994) Adsorption of I Ions on minerals for 129I waste management. J Nucl Sci Technol 31(6):620–622. doi:10.1080/18811248.1994.9735198

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This study was conducted with the financial support from the Finnish Doctoral School for Nuclear Engineering and Radiochemistry (YTERA). Antero Lindberg from GTK is greatly appreciated for supplying the mineral samples used in this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mervi Söderlund.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Söderlund, M., Virkanen, J., Aromaa, H. et al. Sorption and speciation of iodine in boreal forest soil. J Radioanal Nucl Chem 311, 549–564 (2017). https://doi.org/10.1007/s10967-016-5022-z

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-016-5022-z

Keywords

Navigation