Skip to main content
Log in

Polyvinyl alcohol fibers with functional phosphonic acid group: synthesis and adsorption of uranyl (VI) ions in aqueous solutions

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

PVA functionalized with vinylphosphonic acid was prepared as a new adsorbent for uranyl (VI) adsorption from aqueous solutions. The vinylphosphonic acid was cografted onto PVA fibers by preirradiation grafting technique. The adsorbent were characterized by Fourier transform infrared spectroscopy and scanning electron microscopy. The adsorbent was observed to possess a fibrous structure and was bonded with phosphonic acid groups successfully. The adsorbent was used for the adsorption of low levels uranyl (VI) ions from aqueous solutions. The influence of analytical parameters including pH, adsorption time, amount of adsorbent, metal ion concentration, and temperature were investigated on the recovery of uranyl (VI) ion in aqueous solution. The maximum adsorption capacity (32.1 mg g−1) and fast equilibrium time (30 min) were achieved at pH of 4.5 at room temperature. Thermodynamic parameters (ΔH° = 2.695 kJ mol−1; ΔS° = 31.15 J mol−1 K−1; ΔG° = −6.748 kJ mol−1) show the adsorption of an exothermic process and spontaneous nature, respectively. The possible coordination mechanism was illustrated. Adsorption and desorption coexist in aqueous solutions and then the system becomes equilibrium.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Scheme 2
Scheme 3
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Scheme 4

Similar content being viewed by others

References

  1. Raju CSK, Subramanian MSA (2007) Sequential separation of lanthanides, thorium and uranium using novel solid phase extraction method from high acidic nuclear wastes. J Hazard Mater 145:315–322

    Article  CAS  Google Scholar 

  2. Merdivan M, Düz MZ, Hamamci C (2001) Sorption behavior of uranium (VI) with N,N-dibutyl-N′-benzoylthiourea impregnated in Amberlite XAD-16. Talanta 55:639–645

    Article  CAS  Google Scholar 

  3. Rao TP, Metilda P, Gladis JM (2006) Preconcentration techniques for uranium (VI) and thorium (VI) prior to analytical determination-an overview. Talanta 68:1047–1064

    Article  CAS  Google Scholar 

  4. Yun CK (1982) Development of a process for continuous extraction of uranium from seawater, IAEA-R-1759-F. Nuclear Energy Agency and the International Atomic Energy, Vienna

    Google Scholar 

  5. Gorden AEV, Xu JD, Raymond KN (2003) Rational design of sequestering agents for plutonium and other actinides. Chem Rev 103:4207–4282

    Article  CAS  Google Scholar 

  6. Walton PH, Raymond KN (1995) Stereognostic coordination chemistry 4: the design and synthesis of a selective uranyl ion complexant. Inorg Chim Acta 240:593–601

    Article  CAS  Google Scholar 

  7. Sather AC, Berryman OB, Jr J (2010) Rebek, selective recognition and extraction of the uranyl ion. J Am Chem Soc 132:13572–13574

    Article  CAS  Google Scholar 

  8. Beer S, Berryman OB, Ajami D, Jr J (2010) Rebek, encapsulation of the uranyl dication. Chem Sci 1:43–47

    Article  CAS  Google Scholar 

  9. Koide Y, Terasaki H, Sato H, Shosenji H, Yamada K (1996) Flotation of uranium from seawater with phosphate esters of C-undecylcalix[4]resorcinarene. Bull Chem Soc Jpn 69:785–790

    Article  CAS  Google Scholar 

  10. Yang JB, Volesky B (1999) Modeling uranium proton ion exchange in biosorption. Environ Sci Technol 33:4079–4085

    Article  CAS  Google Scholar 

  11. Davies RV, Kennedy J, Mcilroy RW, Spence R (1964) Extraction of uranium from sea water. Nature 203:1110–1115

    Article  Google Scholar 

  12. Rao LF (2011) Recent international R&D activities in the extraction of uranium from seawater. Lawrence Berkeley National Laboratory, Berkeley

    Google Scholar 

  13. Tamada M (2009) Current status of technology for collection of uranium from seawater. Japan Atomic Energy Agency, Ibaraki

    Google Scholar 

  14. Saito K, Hori T, Furusaki S, Sugo T, Okamoto J (1987) Porous amidoxime-group-containing membrane for the recovery of uranium from seawater. Ind Eng Chem Res 26:1977–1981

    Article  CAS  Google Scholar 

  15. Sodayea H, Nisanb S, Poletikoc C, Prabhakara S, Tewaria PK (2009) Extraction of uranium from the concentrated brine rejected by integrated nuclear desalination plants. Desalination 235:9–32

    Article  Google Scholar 

  16. Horwitz EP, Dietz ML, Chiarizia R, Diamond H, Essling AM, Graczyk D (1992) Separation and preconcentration of actinides by extraction chromatography using a supported liquid anion exchanger: application to the characterization of high-level nuclear waste solutions. Anal Chim Acta 25:63–78

    Google Scholar 

  17. Katragadda S, Gesser HD, Chow A (1997) Extraction of uranium from aqueous solution by phosphonic acid-imbedded polyurethane foam. Talanta 44:1865–1871

    Article  CAS  Google Scholar 

  18. Merdivan M, Buchmeiser MR, Bonn G (1999) Phosphonate-based resins for the selective enrichment of uranium (VI). Anal Chim Acta 402:91–97

    Article  CAS  Google Scholar 

  19. Shamsipur M, Yamini Y, Ashtari P, Khanchi A, Ghannadimarageh M (2002) A rapid method for the extraction and separation of uranium from thorium and other accompanying elements using membrane disks modified by trioctyl phosphine oxide. Sep Sci Technol 35:1011

    Article  Google Scholar 

  20. Prabhakaran D, Subramanian MS (2004) Selective extraction of U(VI), Th(IV), and La(III) from acidic matrix solutions and environmental samples using chemically modified Amberlite XAD-16 resin. Anal Bioanal Chim 379:519–525

    Article  CAS  Google Scholar 

  21. Kadous A, Didi MA, Villemin D (2010) A new sorbent for uranium extraction: ethylenediamino tris(methylenephosphonic) acid grafted on polystyrene resin. J Radioanal Nucl Chem 284:431–438

    Article  CAS  Google Scholar 

  22. Abderrahim O, Didi MA, Villemin D (2009) A new sorbent for uranium extraction: polyethyleniminephenylphosphonamidic acid. J Radioanal Nucl Chem 279:237–244

    Article  CAS  Google Scholar 

  23. Das S, Pandey AK, Vasudevan T, Athawale AA, Manchanda VK (2009) Adsorptive preconcentration of uranium in hydrogels from seawater and aqueous solutions. Ind Eng Chem Res 48:6789–6796

    Article  CAS  Google Scholar 

  24. Das S, Pandey AK, Athawale AA, Manchanda VK (2009) Exchanges of uranium (VI) species in amidoxime-functionalized sorbents. J Phys Chem B 113:6328–6335

    Article  CAS  Google Scholar 

  25. Zhao YS, Liu CX, Feng M, Chen Z, Li SQ, Tian G, Wang L, Huang JB, Li SJ (2010) Solid phase extraction of uranium (VI) onto benzoylthiourea-anchored activated carbon. J Hazard Mater 176:119–124

    Article  CAS  Google Scholar 

  26. Lecouvey M, Mallard I, Bailly T, Burgada R, Leroux Y (2001) A mild and efficient one-pot synthesis of 1-hydroxymethylene-1,1-bisphosphonic acids. Preparation of new tripod ligands. Tetrahedron Lett 42:8475–8478

    Article  CAS  Google Scholar 

  27. Sawicki M, Siaugue JM, Jacopin C, Moulin C, Bailly T, Burgada R, Meunier S, Baret P, Pierre JL, Taran F (2005) Discovery of powerful uranyl ligands from efficient synthesis and screening. Chem Eur J 11:3689–3697

    Article  CAS  Google Scholar 

  28. Burgada R, Bailly T, Prange T, Lecouvey M (2007) Synthetic strategy of new powerful tris-bisphosphonic ligands for chelation of uranyl, iron, and cobalt cations. Tetrahedron Lett 48:2315–2319

    Article  CAS  Google Scholar 

  29. Karve M, Rajgor RV (2008) Amberlite XAD-2 impregnated or ganophosphinic acid extractant for separation of uranium (VI) from rare earth elements. Desalination 232:191–197

    Article  CAS  Google Scholar 

  30. Dietz ML, Horwitz EP, Sajdak LR, Chiarizia R (2001) An improved extraction chromatographic resin for the separation of uranium from acidic nitrate media. Talanta 54:1173–1184

    Article  CAS  Google Scholar 

  31. Yao ZH, Rao L, Xu J (2002) Synthesis of a new type of adsorbent containing carboxyl and amidoxime group by preirradiation grafting and its absorption of metal ions. J Appl Polym Sci 83:1986–1992

    Article  CAS  Google Scholar 

  32. Vidya K, Dapurkar SE, Selvam P, Badamali SK, Gupta NM (2001) The entrapment of UO2 2+ in mesoporous MCM-41 and MCM-48 molecular sieves. Microporous Mesoporous Mater 50:173–179

    Article  CAS  Google Scholar 

  33. Shao DD, Jiang ZQ, Wang XK, Li JX, Meng YD (2009) Plasma induced grafting carboxymethyl cellulose on multiwalled carbon nanotubes for the removal of UO2 2+ from aqueous solution. J Phys Chem B 113:860–864

    Article  CAS  Google Scholar 

  34. Metilda P, Sanghamitra K, Gladis JM, Naidu GRK, Rao TP (2005) Amberlite XAD-4 functionalized with succinic acid for the solid phase extractive preconcentration and separation of uranium (VI). Tanlata 65:192–200

    CAS  Google Scholar 

  35. Someda HH, Sheha RR (2008) Solid phase extractive preconcentration of some actinide elements using impregnated carbon. Radiochemistry 50:50–56

    Article  Google Scholar 

  36. Starvin AM, Rao TP (2004) Solid phase extractive preconcentration of uranium (VI) onto diarylazobisphenol modified activated carbon. Talanta 63:225–232

    Article  CAS  Google Scholar 

  37. Merdivan M, Seyhan S, Gok C (2006) Use of benzoylthiourea immobilized on silica gel for separation and preconcentration of uranium (VI). Microchim Acta 154:109–114

    Article  CAS  Google Scholar 

  38. Kim JH, Lee HI, Yeon JW, Jung YJ, Kim JM (2010) Removal of uranium (VI) from aqueous solutions by nanoporous carbon and its chelating polymer composite. J Radioanal Nucl Chem 286:129–133

    Article  CAS  Google Scholar 

  39. Venkatesan KA, Sukumaran V, Antony MP, Vasudeva Rao PR (2010) Extraction of uranium by amine, amide and benzamide grafted covalently on silica gel. J Radioanal Nucl Chem 260:443–450

    Article  Google Scholar 

Download references

Acknowledgments

The financial support from the Science and Technology development Foundation of China Academy of Engineering Physics (Grants 2011A0301003) is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaolin Wang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chi, F., Wang, X., Xiong, J. et al. Polyvinyl alcohol fibers with functional phosphonic acid group: synthesis and adsorption of uranyl (VI) ions in aqueous solutions. J Radioanal Nucl Chem 296, 1331–1340 (2013). https://doi.org/10.1007/s10967-012-2303-z

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-012-2303-z

Keywords

Navigation