Skip to main content
Log in

Sorption characteristics of an economical sorbent material used for removal radioisotopes of cesium and europium

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

Application study for the evaluation of sorption characteristics of sawdust as an economical sorbent material used for decontamination of radioisotopes cesium and europium from aqueous solution has been carried out in the present work. In this respect, sawdust (untreated and treated by HNO3) has been prepared from the commercial processing of wood for furniture production. Pore properties of the activated carbon such as BET surface area, pore volume, pore size distribution, and pore diameter were characterized by N2 adsorption and DFT software. Radiotracer method onto sawdust from aqueous solutions was studied in a batch technique with respect to pH, contact time, temperature. The kinetics of adsorption of Eu3+ and Cs+ have been discussed using five kinetic models namely, pseudo-first-order model, pseudo-second-order model, Elovich equation, intraparticle diffusion model, and modified Freundlich equation that have been tested in order to analysis the experimental data. Kinetic parameters and correlation coefficients were determined. It was shown that the second-order kinetic equation could describe the sorption kinetics for two metal ions. The metal uptake process was found to be controlled by intraparticle diffusion. Thermodynamic parameters, such as ΔH, ΔG and ΔS, have been calculated by using the thermodynamic equilibrium coefficient obtained at different temperatures. The obtained results indicated that endothermic nature of sorption process for both 152+154Eu and 134Cs onto sawdust.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. David Liu HF, Liptak GB (2000) Hazardous waste and solid waste. Lewis Publishers, USA

    Google Scholar 

  2. International Atomic Energy Agency (IAEA) (1992) Use of inorganic sorbents for treatment of liquid radioactive waste and backfill of underground repositories. IAEA-TECDOC-675, Vienna

    Google Scholar 

  3. International Atomic Energy Agency (IAEA) (2002) Technical Reports Series, No. 408, ‘‘Application of ion exchange processes for the treatment of radioactive waste and management of spent ion exchangers’’, IAEA, Vienna, Austria

  4. International Atomic Energy Agency (IAEA) (2003) Combined methods for liquid radioactive waste treatment. IAEA-TECDOC-1336, Vienna, Austria

    Google Scholar 

  5. Hameed BH, Ahmad AL, Latiff KNA (2007) Dyes Pigment 75:143–149

    Article  CAS  Google Scholar 

  6. Shukla A, Zhang Y, Dubey P, Margrave JL, Shukla SS (2002) J Hazard Mater B95:137–152

    Article  Google Scholar 

  7. Srinivasakannan C, Abu MZ (2004) Bakar, Biomass Bioenergy 27:89–96

    Article  CAS  Google Scholar 

  8. Zacar MO, Sengil IA (2005) Bioresour Technol 96:791–795

    Article  Google Scholar 

  9. Deshkar AM, Bokade SS, Dara SS (1990) Water Res 24:1011–1016

    Article  CAS  Google Scholar 

  10. Seki K, Saito N, Aoyama M (1997) Wood Sci Technol 31:441–447

    CAS  Google Scholar 

  11. Šćiban M, Klašnja M, Škrbić B (2006) J Hazard Mater B136:266–271

    Google Scholar 

  12. Gupta S, Babu BV (2009) Chem Eng J 150:352–365

    Article  CAS  Google Scholar 

  13. Karthikeyan T, Rajgopal S, Miranda LR (2005) J Hazard Mater B124:192–199

    Article  Google Scholar 

  14. Sreejalekshmi KG, Krishnan KA, Anirudhan TS (2009) J Hazard Mater 161:1506–1513

    Article  CAS  Google Scholar 

  15. Ahmada A, Rafatullah M, Sulaiman O, Ibrahim MH, Chii YY, Siddique BM (2009) Desalination 247:636–646

    Article  Google Scholar 

  16. Vijayaraghavan K, Won SW, Yun YS (2009) J Hazard Mater 167:790–796

    Article  CAS  Google Scholar 

  17. Khattri SD, Singh MK (2009) J Hazard Mater 167:1089–1094

    Article  CAS  Google Scholar 

  18. Sing KW, Everet DH, Haul RAW, Moscou L, Pierotti RA, Rouquero J, Siemieniewasa T (1985) Pure Appl Chem 57:603–619

    Article  CAS  Google Scholar 

  19. Ryu Z, Zheng J, Wang M, Zhang B (1999) Carbon 37:1257–1264

    Article  CAS  Google Scholar 

  20. Seaton NA, Walton JPRB, Quirke N (1989) Carbon 27:853–861

    Article  CAS  Google Scholar 

  21. Puziy AM, Poddubnaya OI, Martnez-Alonso A, Suarez-Garcia F, Tascon JMD (2002) Carbon 40:1493–1505

    Article  CAS  Google Scholar 

  22. Pradhan BK, Sandles NK (1999) Carbon 37:1323–1332

    Article  CAS  Google Scholar 

  23. El-Sheikh AH, Newman AP, Al-Daffaee HK, Phull S, Cresswell N, Anal J (2004) Appl Pyrolysis 71:151–164

    Article  CAS  Google Scholar 

  24. Menedez JA, Menendez EM, Iglesias MJ, Garcia A, Pis JJ (1999) Carbon 37:1115–1121

    Article  Google Scholar 

  25. Mehandjiev DR, Nickolov RN, Ioncheva RB (1997) Fuel 76(5):381–384

    Article  CAS  Google Scholar 

  26. Shim JW, Park SJ, Ryu SK (2001) Carbon 39:1635–1642

    Article  CAS  Google Scholar 

  27. Batzias FA, Sidiras DK (2004) J Hazard Mater B114:167–174

    Article  Google Scholar 

  28. Shuklaa SS, Yua LJ, Dorrisa KL, Shukla A (2005) J Hazard Mater B121:243–246

    Article  Google Scholar 

  29. Abdel-Galil EA (2006) Chemical studies for sorption of some radionuclides on silico (IV) titanate as cation exchanger, M.Sc. thesis, Chemistry Department, Faculty of Science, Zagazig University

  30. Shehata FA, Attallah MF, Borai EH, Hilal MA, Abo-Aly MM (2010) Appl Radiat Isot 68:239–249

    Article  CAS  Google Scholar 

  31. Barrett PEP, Joyner LG, Halenda PP (1951) J Am Chem Soc 73:373–380

    Article  CAS  Google Scholar 

  32. Ho YS, McKay G (1998) Chem Eng J 70:115–124

    CAS  Google Scholar 

  33. Cheung CW, Porter JF, Mckay G (2000) Sep Purif Technol 19:55–64

    Article  CAS  Google Scholar 

  34. Weber WJ Jr, Morris JC (1963) J Saint Eng Div Am Soc Civil Eng 89:31–60

    Google Scholar 

  35. Kuo S, Lotse EG (1973) Soil Sci Soc Am J 116:400–406

    CAS  Google Scholar 

  36. Teng H, Hsieh C (1999) Ind Eng Chem Res 38:292–297

    Article  CAS  Google Scholar 

  37. Argun ME, Dursun S, Ozdemir C, Karatas M (2007) J Hazard Mater 141:77–85

    Article  CAS  Google Scholar 

  38. Ofomaja AE (2008) Chem Eng J 143:85–95

    Article  CAS  Google Scholar 

  39. Kaczala F, Marques M, Hogland W (2009) Bioresour Technol 100:235–243

    Article  CAS  Google Scholar 

  40. Özacar M, Sengil IA (2005) Process Biochem 40:565–572

    Article  Google Scholar 

  41. Rudzinski W, Panczyk T (2002) Adsorption 8:23–34

    Article  CAS  Google Scholar 

  42. Gökmen V, Serpen A (2002) J Food Eng 53:221–227

    Article  Google Scholar 

  43. Aharoni C, Tompkins FC (1970) Kinetics of adsorption and desorption and the Elovich equation. In: Eley DD, Pines H, Weisz PB (eds) Advances in catalysis and related subjects, vol 21. Academic Press, New York, pp 1–49

    Google Scholar 

  44. Ru-Ling T, Feng-Chin W, Ruey-Shin J (2003) Carbon 41:487–495

    Article  Google Scholar 

  45. Ayyappan R, Carmalin Sophia A, Swaminathan K, Sandhya S (2005) Process Biochem 40:1293–1299

    Article  CAS  Google Scholar 

  46. Özacar M, Sengil IA (2004) Biochem Eng J 21:39–45

    Article  Google Scholar 

  47. Arslano¢glu FN, Kar F, Arslan N (2005) J Food Eng 68:409–417

    Article  Google Scholar 

  48. Saleem M, Afzal M, Qadeer R, Hanif J (1992) Sep Sci Technol 27(2):239–253

    Article  CAS  Google Scholar 

  49. Gupta VK, Mohan D, Sharma S (1998) Sep Sci Technol 33(9):1331–1343

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. F. Attallah.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hassan, H.S., Attallah, M.F. & Yakout, S.M. Sorption characteristics of an economical sorbent material used for removal radioisotopes of cesium and europium. J Radioanal Nucl Chem 286, 17–26 (2010). https://doi.org/10.1007/s10967-010-0654-x

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-010-0654-x

Keywords

Navigation