Skip to main content
Log in

Fluorescence spectroscopic study on complexation of uranium(VI) by glucose: a comparison of room and low temperature measurements

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

Cryogenic techniques are currently used in scanning tunnelling microscopy (STM) and single molecule spectroscopy. Recently such cryogenic devices have also been adapted to time resolved laser-induced fluorescence spectroscopy (TRLFS) systems applied to uranium(VI). In our study, we interpret TRLFS results obtained for the uranyl(VI) glucose system at room temperature (RT) and under cryogenic conditions of 153 K (cryo-TRLFS). A uranyl(VI) glucose complex was only identified by cryo-TRLFS measurements at pH 5 and not by RT measurements. The uranyl(VI) glucose complex was characterized by five emission bands at 499.0, 512.1, 525.2, 541.7, and 559.3 nm and a fluorescence lifetime of 20.9 ± 2.9 μs. The uranyl(VI) glucose complex formation constant was calculated for the first time to be logßI=0.1 M = 15.25 ± 0.96. Cryo-TRLFS investigation opens up new possibilities for the determination of complex formation constants since interfering quenching effects often encounter at RT are suppressed by measurements at cryogenic conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Moore CM, DiChristina TJ (2002) Metal (U, Fe, Mn, Hg) cycling. John Wiley & Sons, New York, pp 1902–1912

    Google Scholar 

  2. Geipel G, Brachmann A, Brendler V, Bernhard G, Nitsche H (1996) Radiochim Acta 75:199–204

    CAS  Google Scholar 

  3. Bernhard G, Geipel G, Reich T, Brendler V, Amayri S, Nitsche H (2001) Radiochim Acta 89:511–518

    Article  CAS  Google Scholar 

  4. Brendler V, Geipel G, Bernhard G, Nitsche H (1996) Radiochim Acta 74:75–80

    CAS  Google Scholar 

  5. Czerwinski KR, Buckau G, Scherbaum F, Kim JI (1994) Radiochim Acta 65:111–119

    CAS  Google Scholar 

  6. Pompe S, Brachmann A, Bubner M, Geipel G, Heise KH, Bernhard G, Nitsche H (1998) Radiochim Acta 82:89–95

    CAS  Google Scholar 

  7. Sachs S, Brendler V, Geipel G (2007) Radiochim Acta 95:103–110

    Article  CAS  Google Scholar 

  8. Bargar JR, Reitmeyer R, Davis JA (1999) Environ Sci Technol 33:2481–2484

    Article  CAS  Google Scholar 

  9. Wall JD, Krumholz LR (2006) Annu Rev Microbiol 60:149–166

    Article  CAS  Google Scholar 

  10. Neiss J, Stewart BD, Nico PS, Fendorf S (2007) Environ Sci Technol 41:7343–7348

    Article  CAS  Google Scholar 

  11. Liger E, Charlet L, Van Cappellen P (1999) Geochim Cosmochim Acta 63:2939–2955

    Article  CAS  Google Scholar 

  12. Lovley DR (1993) Annu Rev Microbiol 47:263–290

    Article  CAS  Google Scholar 

  13. Neuberg C (1908) Biochemische Zeitschrift 13:305–320

    Google Scholar 

  14. Suzuki Y, Nankawa T, Yoshida T, Ozaki T, Ohnuki T, Francis AJ, Tsushima S, Enokida Y, Yamamoto I (2006) Radiochim Acta 94:579–583

    Article  CAS  Google Scholar 

  15. Warwick P, Evans N, Hall T, Vines S (2004) Radiochim Acta 92:897–902

    Article  CAS  Google Scholar 

  16. Sawyer DT, Kula RJ (1962) Inorg Chem 1:303

  17. Rao LF, Garnov AY, Rai D, Xia YX, Moore RC (2004) Radiochim Acta 92:575–581

    Article  CAS  Google Scholar 

  18. Koban A, Geipel G, Rossberg A, Bernhard G (2004) Radiochim Acta 92:903–908

    Article  CAS  Google Scholar 

  19. Koban A, Geipel G, Bernhard G (2003) Radiochim Acta 91:393–396

    Article  CAS  Google Scholar 

  20. Tajmir-Riahi HA (1986) Inorg Chim Acta 119:227–232

    Article  CAS  Google Scholar 

  21. Tajmir-Riahi HA (1987) Inorg Chim Acta-Bioinorg Chem 135:67–72

    Article  CAS  Google Scholar 

  22. Tajmir-Riahi HA (1988) Inorg Chim Acta-Bioinorg Chem 153:155–159

    Article  CAS  Google Scholar 

  23. Kirishima A, Kimura T, Tochiyama O, Yoshida Z (2004) Radiochim Acta 92:889–896

    Article  CAS  Google Scholar 

  24. Vercouter T, Vitorge P, Amekraz B, Moulin C (2008) Inorg Chem 47:2180–2189

    Article  CAS  Google Scholar 

  25. Opel K, Weiss S, Hubener S, Zanker H, Bernhard G (2007) Radiochim Acta 95:143–149

    Article  CAS  Google Scholar 

  26. Steudtner R (2009) Interaction between uranium and selected bioligands. TU Dresden (in preparation)

  27. Bell JT, Biggers RE (1965) J Mol Spectrosc 18:247–275

    Article  CAS  Google Scholar 

  28. Billard I, Ansoborlo E, Apperson K, Arpigny S, Azenha ME, Birch D, Bros P, Burrows HD, Choppin G, Couston L, Dubois V, Fanghanel T, Geipel G, Hubert S, Kim JI, Kimura T, Klenze R, Kronenberg A, Kumke M, Lagarde G, Lamarque G, Lis S, Madic C, Meinrath G, Moulin C, Nagaishi R, Parker D, Plancque G, Scherbaum F, Simoni E, Sinkov S, Viallesoubranne C (2003) Appl Spectrosc 57:1027–1038

    Article  CAS  Google Scholar 

  29. Eliet V, Grenthe I, Bidoglio G (2000) Appl Spectrosc 54:99–105

    Article  CAS  Google Scholar 

  30. Moulin C, Laszak I, Moulin V, Tondre C (1998) Appl Spectrosc 52:528–535

    Article  CAS  Google Scholar 

  31. Kato Y, Meinrath G, Kimura T, Yoshida Z (1994) Radiochimica Acta 64:107–111

    Google Scholar 

  32. Eliet V, Bidogloi G, Omenetto N, Parma L, Grenthe I (1995) J Chem Soc Faraday Trans 91:2275–2285

    Article  Google Scholar 

  33. Wang Z, Zachara JM, Yantasee W, Gassman PL, Liu CX, Joly AG (2004) Environ Sci Technol 38:5591–5597

    Article  CAS  Google Scholar 

  34. Lotnik SV, Khamidullina LA, Kazakov VP (2003) Radiochemistry 45:555–558

    Article  CAS  Google Scholar 

  35. Wolery T (1992) Technical report UCRL-MA-10662 PT I ed. Lawrence Livermore National Laboratory, Livermore, CA, USA

  36. Guillaumont R, Fanghänel T, Fuger J, Grenthe I, Neck V, Palmer DA, Rand MH (2003) Update on the chemical thermodynamics of uranium, neptunium, plutonium, americium and technetium. OECD Nuclear Energy Agency, Data Bank, Issy-les-Moulineaux. Elsevier, France

    Google Scholar 

  37. O’Haver TC, Green GL (1976) Anal Chem 48:312–318

    Article  Google Scholar 

  38. Meinrath G (1997) J Radioanal Nucl Chem 224:119–126

    Article  CAS  Google Scholar 

  39. Grenthe I, Fuger J, Lemire RJ, Muller AB, Nguyen-Trung C, Wanner H (1992) Chemical thermodynamics of uranium, 1st edn. Elsevier Science Publishers B. V, Amsterdam

    Google Scholar 

  40. Kilde G, Wynnejones WFK (1953) Trans Faraday Soc 49:243–251

    Article  CAS  Google Scholar 

  41. Gampp H, Maeder M, Meyer CJ, Zuberbühler AD (1985) Talanta 32:257–264

    CAS  Google Scholar 

Download references

Acknowledgments

We thank Manuela Eilzer for technical assistance in laser spectroscopy measurements.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robin Steudtner.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Steudtner, R., Arnold, T., Geipel, G. et al. Fluorescence spectroscopic study on complexation of uranium(VI) by glucose: a comparison of room and low temperature measurements. J Radioanal Nucl Chem 284, 421–429 (2010). https://doi.org/10.1007/s10967-010-0489-5

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-010-0489-5

Keywords

Navigation