Skip to main content
Log in

Improved antibacterial and antioxidant activities of gallic acid grafted chitin-glucan complex

  • ORIGINAL PAPER
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

In this study, we have developed phenolic acid grafted chitin-glucan complex via new, simple and effective free radical mediated method by using gallic acid (GA) and chitin-glucan complex. The chemical structure of Gallic acid grafted chitin-glucan complex (GA-g-chitin-glucan complex) was characterized by proton nuclear magnetic resonance (1H-NMR) and Fourier-transform infrared spectroscopy (FT-IR). X-ray diffraction (XRD) result showed that after grafting crystallinity of chitin-glucan complex decreases and rough and porous morphology was observed by Scanning electron microscopy (SEM) due to decreased hydrogen bonds. GA-g-chitin-glucan complex showed excellent biocompatible, better antibacterial activity, and tremendous antioxidant activity in comparison to unmodified chitin-glucan complex. Antibacterial result showed better inhibitory properties of GA-g-chitin-glucan complex than that of unmodified chitin-glucan complex. In antioxidant activity, GA-g-chitin-glucan complex was much higher than chitin-glucan complex examined by two different methods DPPH and ABTS radical scavenging activities. It gives 93.23% for DPPH and 94.63% for ABTS scavenging activity. Therefore, it is expected that GA-g-chitin-glucan complex would be highly applicable in biomedical areas.

Synthesis of GA-g-chitin-glucan complex and its antibacterial & antioxidant property

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Damiani E, Bacchetti T, Padella L, Tiano L, Carloni P (2014). J Food Compos Anal 33:59–66

    CAS  Google Scholar 

  2. Faried A, Kurnia D, Faried LS, Usman N, Miyazaki T, Kato H, Kuwano H (2007). Int J Oncol 30:605–613

    CAS  PubMed  Google Scholar 

  3. Schmitzer V, Slatnar A, Veberic R, Stampar F, Solar A (2011). J Food Sci 76:S14–S19

    CAS  PubMed  Google Scholar 

  4. Ma J, Luo XD, Protiva P, Yang H, Ma C, Basile MJ, Weinstein IB, Kennelly EJ (2003). J Nat Prod 66:983–986

    CAS  PubMed  Google Scholar 

  5. Qu W, Breksa Iii AP, Pan Z, Ma H (2012). Food Chem 132:1585–1591

    CAS  PubMed  Google Scholar 

  6. Sautrot-Ba P, Malval J-P, Weiss-Maurin M, Paul J, Blacha-Grzechnik A, Tomane S, Mazeran P-E, Lalevee J, Langlois V, Sustainable D-LACS (2018). Chem Eng 6:104–109

    CAS  Google Scholar 

  7. Yuan Y, Song Y, Jing W, Wang Y, Yang X, Liua D (2014). Anal Methods 6:907–914

    CAS  Google Scholar 

  8. Raina K, Rajamanickam S, Deep G, Singh M, Agarwal R, Agarwal C (2008). Mol Cancer Ther 7:1258–1267

    CAS  PubMed  Google Scholar 

  9. Badhani B, Sharma N, Kakkar R (2015). RSC Adv 5:27540–27557

    CAS  Google Scholar 

  10. Lin Y, Wang C, Shao X, Yang L, Hou Y, He H, Sun M (2018). Curr Pharm Anal 14:496–500

    CAS  Google Scholar 

  11. Abdou EM, Masoud MM (2018). Pharm Dev Technol 23:55–66

    CAS  PubMed  Google Scholar 

  12. Sepelevs I, Stepanova V, Galoburda R (2018). Pol J Food Nutr Sci 68:273–280

    CAS  Google Scholar 

  13. Kouassi M-C, Thébault P, Rihouey C, De E, Labat B, Picton L, Dulong V (2017). Biomacromolecules. 18:3238–3251

    CAS  PubMed  Google Scholar 

  14. Wu C, Wang L, Fang Z, Hu Y, Chen S, Sugawara T, Ye X (2016). Mar. Drugs 14:95–112

    PubMed Central  Google Scholar 

  15. Hu Q, Luo Y (2016) Polyphenol-chitosan conjugates: synthesis, characterization, and applications. Carbohydr Polym 151:624–639

    CAS  PubMed  Google Scholar 

  16. Yang J, Sun J, An X, Zheng M, Lu Z, Lu F, Zhang C (2018). RSC Adv 8:6759–6767

    CAS  Google Scholar 

  17. Vittorio O, Cojoc M, Curcio M, Spizzirri UG, Hampel S, Nicoletta FP, Iemma F, Dubrovska A, Kavallaris M, Cirillo G (2016). Macromol Chem Phys 217:1488–1492

    CAS  Google Scholar 

  18. Yang C, Zhou Y, Zheng Y, Li C, Sheng S, Wang J, Wu F (2016). Int J Biol Macromol 87:577–585

    CAS  PubMed  Google Scholar 

  19. Yu S-H, Mi F-L, Pang J-C, Jiang S-C, Kuo T-H, Wu S-J, Shy S-S (2011). Carbohydr Polym 84:794–802

    CAS  Google Scholar 

  20. Yang TS, Liu TT, Lin IH (2017). Food Chem 228:541–549

    CAS  PubMed  Google Scholar 

  21. Guo P, Anderson JD, Bozell JJ, Zivanovic S (2016). Carbohydr Polym 140:171–180

    CAS  PubMed  Google Scholar 

  22. Singh A, Lavkush AKK, Dutta PK, Kumar S, Rai AK (2018). Int J Biol Macromol 110:234–244

    CAS  PubMed  Google Scholar 

  23. Hu Q, Wang T, Zhou M, Xue J, Luo Y (2016). J Agric Food Chem 64:5893–5900

    CAS  PubMed  Google Scholar 

  24. Curcio M, Puoci F, Iemma F, Parisi OI, Cirillo G, Spizzirri UG, Picci N (2009). J Agric Food Chem 57:5933–5938

    CAS  PubMed  Google Scholar 

  25. Liu J, Wen XY, Lu JF, Kan J, Jin CH (2014). Int J Biol Macromol 65:97–106

    CAS  PubMed  Google Scholar 

  26. Spizzirri UG, Iemma F, Puoci F, Cirillo G, Curcio M, Parisi OI, Picci N (2009). Biomacromolecules. 10:1923–1930

    CAS  PubMed  Google Scholar 

  27. Singh A, Dutta PK (2017). J Polym Mater 34:1–9

    Google Scholar 

  28. Skorik YA, Pestov AV, Yatluk YG (2010). Bioresour Technol 101:1769–1775

    CAS  PubMed  Google Scholar 

  29. Abdel-Mohsen AM, Jancar J, Massoud D, Fohlerova Z, Elhadidy H, Spotz Z, Hebeish A (2016). Int J Pharm 510:86–99

    CAS  PubMed  Google Scholar 

  30. Lipke PN, Ovalle R (2010). J. Bacteriol 180:3735–3740

    Google Scholar 

  31. Cabiba E, Blancob N, Arroyo J (2012). Eukaryot. Cell 11:388–400

    Google Scholar 

  32. Farinha I, Freitas F, Reis MAM (2017). New Biotechnol 37:123–128

    CAS  Google Scholar 

  33. Zhang K, Pu Y-Y, Sun D-W (2018). Trends Food Sci Technol 78:72–82

    CAS  Google Scholar 

  34. Li S, Liu M, Zhang C, Tian C, Wang X, Song X, Jing H, Gao Z, Ren Z, Liu W, Zhang J, Jia L (2018). Int J Biol Macromol 109:457–466

    CAS  PubMed  Google Scholar 

  35. Cherno N, Osolina S, Nikitina A (2013). Food Environ. Safety 12:291–299

  36. Singh J, Dutta PK (2009). J Polym Res 16:231–238

    CAS  Google Scholar 

  37. Singh J, Dutta PK (2009). Int J Biol Macromol 45:384–392

    CAS  PubMed  Google Scholar 

  38. Singh J, Dutta PK, Dutta J, Hunt AJ, Macquarrie DJ, Clark JH (2009). Carbohydr Polym 76:188–195

    CAS  Google Scholar 

  39. Liaqat F, Eltem R (2018). Carbohydr Polym 184:243–259

    CAS  PubMed  Google Scholar 

  40. Kumar H, Srivastava R, Dutta PK (2013). Carbohydr Polym 97:327–334

    CAS  PubMed  Google Scholar 

  41. Dutta PK, Tripathi S, Mehrotra GK, Dutta J (2009). Food Chem 114:1173–1182

    CAS  Google Scholar 

  42. Valasques Junior GL, de Lima FO, Boffo EF, Santos JDG, da Silva BC, de Assis SA (2014). Carbohydr Polym 105:293–299

    PubMed  Google Scholar 

  43. Zheng Y, Monty J, Linhardt RJ (2015). Carbohydr Res 405:23–32

    CAS  PubMed  Google Scholar 

  44. Farinha I, Duarte P, Pimentel A, Plotnikova E, Chagas B, Mafra L, Grandfils C, Freitas F, Fortunato E, Reis MA (2015). Carbohydr Polym 130:455–464

    CAS  PubMed  Google Scholar 

  45. Zimoch-Korzycka A, Gardrat C, Kharboutly MA, Castellan A, Pianet I, Jarmoluk A, Coma V (2016). Food Hydrocoll 61:338–343

    CAS  Google Scholar 

  46. Marzorati M, Maquet V, Possemiers S (2017). J Funct Foods 30:313–320

    CAS  Google Scholar 

  47. Li Q, Ren J, Dong F, Feng Y, Gu G, Guo Z (2013). Carbohydr Res 373:103–107

    CAS  PubMed  Google Scholar 

  48. Hu B, Wang Y, Xie M, Hu G, Ma F, Zeng X (2015). J Funct Foods 15:593–603

    CAS  Google Scholar 

  49. Liu J, Lu JF, Kan J, Jin CH (2013). Int J Biol Macromol 62:321–329

    CAS  PubMed  Google Scholar 

  50. Rai S, Kureel AK, Dutta PK, Mehrotra GK (2018). Int J Biol Macromol 110:425–436

    CAS  PubMed  Google Scholar 

  51. Zhang Y, Zhang M, Yang H (2015). Food Chem 174:558–563

    CAS  PubMed  Google Scholar 

  52. Wang X-Y, Zhang L, Wei X-H, Wang Q (2013). Biomaterials. 34:1843–1851

    CAS  PubMed  Google Scholar 

  53. Lee D-S, Je J-Y (2013). J Agric Food Chem 61:6574–6579

    CAS  PubMed  Google Scholar 

  54. Singh A, Dutta PK, Kumar H, Kureel AK, Rai AK (2018). Carbohydr Polym 193:99–107

    CAS  PubMed  Google Scholar 

  55. Roy D, Basu PK, Raghunathan P, Eswaran SV (2004). Magn Reson Chem 42:76–80

    CAS  PubMed  Google Scholar 

  56. Lepistö M, Artursson P, Edman P, Laakso T, Sjöholm I (1983). Anal Biochem 133:132–135

    PubMed  Google Scholar 

  57. Necol MR, Gurovicb MSV, Díaz SR, Silbestri GF (2019). Carbohydr Res 471:6–12

    CAS  PubMed  Google Scholar 

  58. Naz A, Arun S, Narvi SS, Alam MS, Singh A, Bhartiya P, Dutta PK (2018). Int J Biol Macromol 110:215–226

    CAS  PubMed  Google Scholar 

  59. Hassainia A, Satha H, Boufi S (2018). Int J Biol Macromol 117:1334–1342

    CAS  PubMed  Google Scholar 

  60. Xie M, Hu B, Wang Y, Zeng X (2014). J Agric Food Chem 62:9128–9136

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors are thankful to MNNIT, Allahabad for the financial support for this research and providing stipend to AS.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. K. Dutta.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Highlights

• Antibacterial and antioxidant properties containing Gallic acid grafted chitin-glucan complex have been developed via free radical grafting method.

• Safe, biocompatible, non-toxic, polymeric conjugate for biomedical application.

• Gallic acid grafted chitin-glucan complex may be useful for food technology.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Singh, A., Dutta, P.K., Kumar, H. et al. Improved antibacterial and antioxidant activities of gallic acid grafted chitin-glucan complex. J Polym Res 26, 234 (2019). https://doi.org/10.1007/s10965-019-1893-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10965-019-1893-3

Keywords

Navigation