Skip to main content
Log in

Investigating the effect of organoclay montmorillonite and rubber ratio composition on the enhancement compatibility and properties of carboxylated acrylonitrile-butadiene rubber/ethylene-propylene-diene monomer hybrid elastomer nanocomposites

  • ORIGINAL PAPER
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

In this work, a reinforcing organoclay montmorillonite (OMMT) (i.e., 0, 2.5, 5, 7.5 and 10 phr) and novel alloys were prepared, which significantly improved the thermal, mechanical and rheological properties of immiscible XNBR/EPDM alloys. Results revealed that optimum cure time (t90) and scorch time (t5), decrease with increasing OMMT (Cloisite 15A) content; while the cure time was prolonged with increasing EPDM content. The results of X-ray diffraction show an increase in the distance between the layers of the silicate plates in the continuous XNBR/EPDM rubber phase in all of the compositions compared with the nanoclay powder. This indicates the penetration of rubber chains among the silicate layers. This phenomenon was also confirmed by direct observation of the intercalated and exfoliated microstructure of the nanocomposite by a transmission electron microscopy (TEM).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. Utracki LA (2002) Introduction to polymer blends, in: Utracki LA (Ed.), Polymer Blends Handbook. Kluwer Academic Publishers, Dordrecht, 1–24

    Chapter  Google Scholar 

  2. Satyanarayana MS, Bhowmick AK, Dinesh Kuma K (2016) Preferentially fixing nanoclays in the phases of incompatible carboxylated nitrile rubber (XNBR)-natural rubber (NR) blend using thermodynamic approach and its effect on physico mechanical properties. Polymer 99:21–43

    Article  CAS  Google Scholar 

  3. Durandish M, Alipour A (2013) Investigation into morphology, microstructure and properties of SBR/EPDM/ORGANO montmorillonite nanocomposites. Chin J Polym Sci 31:660–669

    Article  CAS  Google Scholar 

  4. Mansilla MA, Valentín JL, López-Manchado MA, González-Jiménez A, Marzocca AJ (2016) Effect of entanglements in the microstructure of cured NR/SBR blends prepared by solution and mixing in a two-roll mill. Eur Polym J 81:365–375

    Article  CAS  Google Scholar 

  5. Shabafrooz V, Bandla S, Allahkarami S (2018) Graphene/polyethylene terephthalate nanocomposites with enhanced mechanical and thermal properties. J Polym Res 25:256–262

    Article  Google Scholar 

  6. Salzano de Luna M, Filippone G (2016) Effects of nanoparticles on the morphology of immiscible polymer blends challenges and opportunities. Eur Polym J 79:198–218

    Article  CAS  Google Scholar 

  7. Krause IC (2000) Polymer-polymer compatibility. In: Paul DR, Bucknall CB (eds) Polymer Blends. John Wiley & Sons, Inc, New York, pp 15–30

    Google Scholar 

  8. Ibarra L, Rodrı’guez A, Mora I (2007) Ionic nanocomposites based on XNBR-OMg filled with layered nanoclays. Eur Polym J 43:753–761

    Article  CAS  Google Scholar 

  9. Ai C, Gong G, Zhao X, Liu P (2017) Determination of carboxyl content in carboxylated nitrile butadiene rubber (XNBR) after degradation via olefin cross metathesis. Polym Testing 60:250–252

    Article  CAS  Google Scholar 

  10. Ghosh P, Chakrabarti A (2000) Conducting carbon black filled EPDM Vulcanizates: assessment of dependence of physical and mechanical properties and conducting character on variation of fillers loading. Eur Polym J36:1043–1054

    Article  Google Scholar 

  11. Doufnoune R, Haddaoui N (2017) Effects of surface functionalized partially reduced graphene oxide and different compatibilizers on the properties and structure of PP/EPR nanocomposites. J Polym Res 24:138–147

    Article  Google Scholar 

  12. Jovanovic V, Samarzˇija-Jovanovic S, Simendic JB, Markovic G, Marinovic-Cincovic M (2013) Composites based on carbon black reinforced NBR/EPDM rubber blends. Compos B 45:333–340

    Article  CAS  Google Scholar 

  13. Sarawut P, Kanokwan K, Nattapon S (2016) Physico-mechanical properties and automotive fuel resistance of EPDM/ENR blends containing hybrid fillers. J Polym Res 23:228–237

    Article  Google Scholar 

  14. Wen Yen H, Kuo Bing C, Chang Mou W (2017) Compatibilizer effect on Organosilicate reinforced NBR nanocomposites. J Polym Res 24:205–216

    Article  Google Scholar 

  15. Samarzˇija-Jovanovic S, Jovanovic V, Markovic G, Konstantinovic S, Marinovic-Cincovic. M (2011) Nanocomposites based on silica-reinforced ethylene propylene diene–monomer/acrylonitrile butadiene rubber blends. Compos B 42:1244–1250

    Article  Google Scholar 

  16. Chen H, Li Y, Wang S, Li Y, Zhou Y (2018) Highly ordered structured montmorillonite/brominated butyl rubber nanocomposites: Dramatic enhancement of the gas barrier properties by an external magnetic field. J Membrane Sci 546:22–30

    Article  CAS  Google Scholar 

  17. Singh K, Nanda T, Mehta R (2017) Addition of nanoclay and compatibilized EPDM rubber for improved impact strength of epoxy glass fiber composites. Compos A: Appl Sci Manufact 103:263–271

    Article  CAS  Google Scholar 

  18. Zhang Z, Yu F, Yu W, Zhang H (2015) Non-isothermal crystallization behavior of dynamically vulcanized long chain branched polypropylene/ethylene-propylene-diene monomer blends. J Polym Res 22:198–206

    Article  CAS  Google Scholar 

  19. Maroufkhani M, Katbab AA, Zhang J (2018) Manipulation of the properties of PLA nanocomposites by controlling the distribution of nanoclay via varying the acrylonitrile content in NBR rubber. Polym Testing 65:313–321

    Article  CAS  Google Scholar 

  20. Ebrahimi-Jahromi A, Ebrahimi-Jahromi HR, Hemmati F, Saeb MR, .Formela K (2016) Morphology and mechanical properties of polyamide/clay nanocomposites toughened with NBR/NBR-g-GMA: A comparative study., Compos B: Eng 90:478–484

    Article  CAS  Google Scholar 

  21. Bhuyan B, Srivastava SK, Pionteck J (2017) MWCNT/hectorite hybrid filled acrylonitrile butadiene rubber/ ethylene-co-vinyl acetate blend nanocomposites: preparation and properties. J Polym Res 24:150–159

    Article  Google Scholar 

  22. Alipour A, Naderi G, Ghoreishy MH (2013) Effect of nanoclay content and matrix composition on properties andstress–strain behavior of NR/EPDM nanocomposites. J Appl Sci 127:1275–1284

    Article  CAS  Google Scholar 

  23. Fathurrohman MI, Soegijono B, Budianto E, Rohman S, Ramadhan A (2015) The effect of Organoclay on curing characteristic, mechanical properties, swelling and morphology of natural rubber/Organoclay nanocomposites. Macromol Symp 353:62–69

    Article  CAS  Google Scholar 

  24. Shen L, Xia L, Han T, Wu H, Guo S (2016) Improvement of hardness and compression set properties of EPDM seals with alternating multilayered structure for PEM fuel cells. Int J Hydrog Energy 41:23164–23172

    Article  CAS  Google Scholar 

  25. Chantaratcharoen A, Sirisinha C, Amornsakchai T, Bualek-Limcharoen S, Meesiri W (1999) Improvement of interfacial adhesion of poly(m-phenyleneisophthalamide) short fiber thermoplastic elastomer (SEBS) composites by N-alkylation on fiber surface. Appl Polym Sci 74:2414–2422

    Article  CAS  Google Scholar 

  26. Pasquini C, Figueiredo FC, Prince B (2007) Evaluation of the Mooney viscosity of natural rubber by near-infrared spectroscopy. Spectrosc Lett 38:741–748

    Article  Google Scholar 

  27. Rooj S, Das A, Stöckelhuber KW (2012) Highly exfoliated natural rubber/clay composites by “propping-open procedure”: the influence of fatty acid chain length on exfoliation. Macromol Mater Eng 297:369–383

    Article  CAS  Google Scholar 

  28. Jeddi J, Yousefzade O, Babaei A, Ghanbar S, Rostami A (2017) Morphology, microstructure and rheological properties of SAN/EPDM nanocomposites: investigating the role of organoclay type and order of mixing. Mater Chem Phys 187:181–202

    Article  Google Scholar 

  29. Stöckelhuber KW, Das A, Jurk R, Heinrich G (2010) Contribution of physico-chemical properties of interfaces on dispersibility, adhesion and flocculation of filler particles in rubber. Polymer 51:1954–1963

    Article  Google Scholar 

  30. Funt JM (1998) Dynamic testing and reinforcement of rubber. Rubber Chem Technol 6:842–865

    Google Scholar 

  31. Fu X, Huang G, Xie Z, Xing W (2015) New insights into reinforcement mechanism of nanoclay-filled isoprene rubber during uniaxial deformation by in situ synchrotron X-ray diffraction. RSC Adv 5:25171–25182

    Article  CAS  Google Scholar 

  32. Xu G, Qin S, Yu J, Huang Y, Zhang M, Ruan W (2015) Effect of migration of layered nanoparticles during melt blending on the phase morphology of poly (ethylene terephthalate)/polyamide 6/montmorillonite ternary nanocomposites. RSC Adv 5:29924–29931

    Article  Google Scholar 

  33. Zachariah AK, Geethamma VG, Chandra AK, Mohammed PK, Thomas S (2014) Rheological behaviour of clay incorporated natural rubber and chlorobutyl rubber nanocomposites. RSC Adv 4:58047–58058

    Article  CAS  Google Scholar 

  34. Klueppel M, Heinrich G (1994) Network structure and mechanical properties of sulfur-cured rubbers. Macromolecules 27:3596–3603

    Article  CAS  Google Scholar 

  35. Laskowska A, Zaborski M, Boiteux G, Gain O, Marzec A, Maniukiewicz W (2014) Ionic elastomers based on carboxylated nitrile rubber (XNBR) and magnesium aluminum layered double hydroxide (hydrotalcite). e XPRESS Polym Lett 8:374–386

    Article  CAS  Google Scholar 

  36. Hisham A, Salwa H, Sabbagh E, Magda E, Assche TGV, Barhoum A (2018) Assessment of provoked compatibility of NBR/SBR polymer blend with montmorillonite amphiphiles from the thermal degradation kinetics. 75:1417–1430

  37. Varghese S, Karger-Kocsis J (2003) Melt-compounded natural rubber nanocomposites with pristine and organophilic layered silicates of natural and synthetic origin. J Appl Polym Sci 9:813–819

    Google Scholar 

  38. Wang Y, Zhang H, Wu Y, Yang J, Zhang L (2005) Structure and properties of strain-induced crystallization rubber-clay nanocomposites by co-coagulating the rubber latex and clay aqueous suspension. J Appl Polym Sci 96:318–323

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The financial Zolal Gostar Rooz (ZGR) Company gratefully is acknowledged by the authors. The authors also thank Khazra Sazan Rad Polymer Parsian, Consulting Polymer Engineers CO for supporting this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masoud Mokhtary.

Ethics declarations

Conflict of interest

Conflict of interest the authors declare that there is no conflict of interest regarding the publication of this research paper.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Azizli, M.J., Khonakdar, H.A., Mokhtary, M. et al. Investigating the effect of organoclay montmorillonite and rubber ratio composition on the enhancement compatibility and properties of carboxylated acrylonitrile-butadiene rubber/ethylene-propylene-diene monomer hybrid elastomer nanocomposites. J Polym Res 26, 221 (2019). https://doi.org/10.1007/s10965-019-1885-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10965-019-1885-3

Keywords

Navigation